Predicting Rectal Cancer Response to Total Neoadjuvant Treatment Using an Artificial Intelligence Model Based on Magnetic Resonance Imaging and Clinical Data

被引:4
作者
Ouyang, Ganlu [1 ,2 ,3 ]
Chen, Zhebin [4 ,5 ]
Dou, Meng [4 ,5 ]
Luo, Xu [4 ,5 ]
Wen, Han [4 ,5 ]
Deng, Xiangbing [6 ]
Meng, Wenjian [6 ]
Yu, Yongyang [6 ]
Wu, Bing [7 ]
Jiang, Dan [8 ]
Wang, Ziqiang [6 ]
Yao, Yu [4 ,5 ,10 ]
Wang, Xin [1 ,9 ,11 ]
机构
[1] Sichuan Univ, West China Hosp, Canc Ctr, Dept Radiat Oncol, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp, Canc Ctr, Dept Med Oncol, Chengdu, Peoples R China
[3] Sichuan Univ, West China Hosp, Lung Canc Ctr, Chengdu, Peoples R China
[4] Chinese Acad Sci, Chengdu Inst Comp Applicat, Chengdu, Sichuan, Peoples R China
[5] Univ Chinese Acad Sci, Beijing, Peoples R China
[6] Sichuan Univ, West China Hosp, Dept Gastrointestinal Surg, Chengdu, Peoples R China
[7] Sichuan Univ, West China Hosp, Dept Radiol, Chengdu, Peoples R China
[8] Sichuan Univ, West China Hosp, Dept Pathol, Chengdu, Peoples R China
[9] Sichuan Univ, West China Hosp, Canc Ctr, Dept Abdominal Oncol, Chengdu, Peoples R China
[10] Chinese Acad Sci, Chengdu Inst Comp Applicat, 9 Sect 4 Renmin South Rd, Chengdu, Peoples R China
[11] Sichuan Univ, West China Hosp, Dept Radiat Oncol Abdominal Oncol, Canc Ctr,Abdominal Oncol, 37 Wainan Guoxue Lane, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
artificial intelligence; MRI; response; TNT; rectal cancer; PATHOLOGICAL RESPONSE; RADIOMICS; DIAGNOSIS; MRI;
D O I
10.1177/15330338231186467
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PurposeTo develop a model for predicting response to total neoadjuvant treatment (TNT) for patients with locally advanced rectal cancer (LARC) based on baseline magnetic resonance imaging (MRI) and clinical data using artificial intelligence methods. MethodsBaseline MRI and clinical data were curated from patients with LARC and analyzed using logistic regression (LR) and deep learning (DL) methods to predict TNT response retrospectively. We defined two groups of response to TNT as pathological complete response (pCR) versus non-pCR (Group 1), and high sensitivity [tumor regression grade (TRG) 0 and TRG 1] versus moderate sensitivity (TRG 2 or patients with TRG 3 and a reduction in tumor volume of at least 20% compared to baseline) versus low sensitivity (TRG 3 and a reduction in tumor volume <20% compared to baseline) (Group 2). We extracted and selected clinical and radiomic features on baseline T2WI. Then we built LR models and DL models. Receiver operating characteristic (ROC) curves analysis was performed to assess predictive performance of models. ResultsEighty-nine patients were assigned to the training cohort, and 29 patients were assigned to the testing cohort. The area under receiver operating characteristics curve (AUC) of LR models, which were predictive of high sensitivity and pCR, were 0.853 and 0.866, respectively. Whereas the AUCs of DL models were 0.829 and 0.838, respectively. After 10 rounds of cross validation, the accuracy of the models in Group 1 is higher than in Group 2. ConclusionThere was no significant difference between LR model and DL model. Artificial Intelligence-based radiomics biomarkers may have potential clinical implications for adaptive and personalized therapy.
引用
收藏
页数:10
相关论文
共 50 条
[1]   From Handcrafted to Deep-Learning-Based Cancer Radiomics Challenges and opportunities [J].
Afshar, Parnian ;
Mohammadi, Arash ;
Plataniotis, Konstantinos N. ;
Oikonomou, Anastasia ;
Benali, Habib .
IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (04) :132-160
[2]   Combination of Peri-Tumoral and Intra-Tumoral Radiomic Features on Bi-Parametric MRI Accurately Stratifies Prostate Cancer Risk: A Multi-Site Study [J].
Algohary, Ahmad ;
Shiradkar, Rakesh ;
Pahwa, Shivani ;
Purysko, Andrei ;
Verma, Sadhna ;
Moses, Daniel ;
Shnier, Ronald ;
Haynes, Anne-Maree ;
Delprado, Warick ;
Thompson, James ;
Tirumani, Sreeharsha ;
Mahran, Amr ;
Rastinehad, Ardeshir R. ;
Ponsky, Lee ;
Stricker, Phillip D. ;
Madabhushi, Anant .
CANCERS, 2020, 12 (08) :1-14
[3]   The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging [J].
Amin, Mahul B. ;
Greene, Frederick L. ;
Edge, Stephen B. ;
Compton, Carolyn C. ;
Gershenwald, Jeffrey E. ;
Brookland, Robert K. ;
Meyer, Laura ;
Gress, Donna M. ;
Byrd, David R. ;
Winchester, David P. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2017, 67 (02) :93-99
[4]   A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets [J].
Antropova, Natalia ;
Huynh, Benjamin Q. ;
Giger, Maryellen L. .
MEDICAL PHYSICS, 2017, 44 (10) :5162-5171
[5]   Artificial Intelligence and Big Data in Public Health [J].
Benke, Kurt ;
Benke, Geza .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2018, 15 (12)
[6]   Rectal Cancer, Version 6.2020 Featured Updates to the NCCN Guidelines [J].
Benson, Al B., III ;
Venook, Alan P. ;
Al-Hawary, Mahmoud M. ;
Arain, Mustafa A. ;
Chen, Yi-Jen ;
Ciombor, Kristen K. ;
Cohen, Stacey ;
Cooper, Harry S. ;
Deming, Dustin ;
Garrido-Laguna, Ignacio ;
Grem, Jean L. ;
Gunn, Andrew ;
Hoffe, Sarah ;
Hubbard, Joleen ;
Hunt, Steven ;
Kirilcuk, Natalie ;
Krishnamurthi, Smitha ;
Messersmith, Wells A. ;
Meyerhardt, Jeffrey ;
Miller, Eric D. ;
Mulcahy, Mary F. ;
Nurkin, Steven ;
Overman, Michael J. ;
Parikh, Aparna ;
Patel, Hitendra ;
Pedersen, Katrina ;
Saltz, Leonard ;
Schneider, Charles ;
Shibata, David ;
Skibber, John M. ;
Sofocleous, Constantinos T. ;
Stoffel, Elena M. ;
Stotsky-Himelfarb, Eden ;
Willett, Christopher G. ;
Johnson-Chilla, Alyse ;
Gurski, Lisa A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2020, 18 (07) :807-815
[7]   Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer [J].
Bibault, Jean-Emmanuel ;
Giraud, Philippe ;
Durdux, Catherine ;
Taieb, Julien ;
Berger, Anne ;
Coriat, Romain ;
Chaussade, Stanislas ;
Dousset, Bertrand ;
Nordlinger, Bernard ;
Burgun, Anita .
SCIENTIFIC REPORTS, 2018, 8
[8]   Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images [J].
Brehar, Raluca ;
Mitrea, Delia-Alexandrina ;
Vancea, Flaviu ;
Marita, Tiberiu ;
Nedevschi, Sergiu ;
Lupsor-Platon, Monica ;
Rotaru, Magda ;
Badea, Radu Ioan .
SENSORS, 2020, 20 (11)
[9]   Predicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomics [J].
Bulens, Philippe ;
Couwenberg, Alice ;
Intven, Martijn ;
Debucquoy, Annelies ;
Vandecaveye, Vincent ;
Van Cutsem, Eric ;
D'Hoore, Andre ;
Wolthuis, Albert ;
Mukherjee, Pritam ;
Gevaert, Olivier ;
Haustermans, Karin .
RADIOTHERAPY AND ONCOLOGY, 2020, 142 :246-252
[10]   Data-driven Grading of Brain Gliomas: A Multiparametric MR Imaging Study [J].
Caulo, Massimo ;
Panara, Valentina ;
Tortora, Domenico ;
Mattei, Peter A. ;
Briganti, Chiara ;
Pravata, Emanuele ;
Salice, Simone ;
Cotroneo, Antonio R. ;
Tartaro, Armando .
RADIOLOGY, 2014, 272 (02) :494-503