A Note on Lagrange Interpolation at Principal Lattices

被引:1
作者
Minh, Nguyen Van [1 ]
机构
[1] Foreign Trade Univ, Dong Da, Hanoi, Vietnam
来源
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES | 2023年 / 58卷 / 03期
关键词
Lagrange interpolation; principal lattices; CONTINUITY;
D O I
10.3103/S1068362323030093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a geometric condition on principal lattices in Rn that ensures that the corresponding Lagrange interpolation polynomials of any sufficient smooth function converges to a Taylor polynomial.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 8 条
[1]   A continuity property of multivariate Lagrange interpolation [J].
Bloom, T ;
Calvi, JP .
MATHEMATICS OF COMPUTATION, 1997, 66 (220) :1561-1577
[2]  
Bojanov B.D., 2003, Mathematics and Its Application, V248, DOI [10.1007/978-94-015-8169-1, DOI 10.1007/978-94-015-8169-1]
[3]   ON CERTAIN CONFIGURATIONS OF POINTS IN RN WHICH ARE UNISOLVENT FOR POLYNOMIAL INTERPOLATION [J].
BOS, L .
JOURNAL OF APPROXIMATION THEORY, 1991, 64 (03) :271-280
[4]   On the continuity of multivariate Lagrange interpolation at natural lattices [J].
Calvi, J. -P. ;
Phung, V. M. .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2013, 16 :45-60
[5]   Interpolation lattices in several variables [J].
Carnicer, JM ;
Gasca, M ;
Sauer, T .
NUMERISCHE MATHEMATIK, 2006, 102 (04) :559-581
[6]  
Coatmelec C., 1966, Ann. Sci. Ecole Norm. Sup., V83, P271
[7]  
de Boor C., 1997, SUFACE FITTING MULTI
[8]   On bivariate Hermite interpolation and the limit of certain bivariate Lagrange projectors [J].
Phung Van Manh .
ANNALES POLONICI MATHEMATICI, 2015, 115 (01) :1-21