A Monolayer High-Entropy Layered Hydroxide Frame for Efficient Oxygen Evolution Reaction

被引:48
作者
Ding, Yiran [1 ]
Wang, Zhouyang [2 ]
Liang, Zijia [1 ]
Sun, Xueping [1 ]
Sun, Zihang [2 ]
Zhao, Yuanxin [1 ]
Liu, Junlin [2 ]
Wang, Chenyang [2 ]
Zeng, Ziyue [2 ]
Fu, Lei [1 ,2 ]
Zeng, Mengqi [2 ]
Tang, Lin [1 ]
机构
[1] Wuhan Univ, Inst Adv Studies IAS, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
frames; high-entropy; layered double hydroxides; monolayers; oxygen evolution reaction; NANOSHEETS; EXFOLIATION; SHEETS; SITES;
D O I
10.1002/adma.202302860
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-entropy materials with tailored geometric and elemental compositions provide a guideline for designing advanced electrocatalysts. Layered double hydroxides (LDHs) are the most efficient oxygen evolution reaction (OER) catalyst. However, due to the huge difference in ionic solubility product, an extremely strong alkali environment is necessary to prepare high-entropy layered hydroxides (HELHs), which results in an uncontrollable structure, poor stability, and scarce active sites. Here, a universal synthesis of monolayer HELH frame in a mild environment is presented, regardless of the solubility product limit. Mild reaction conditions allow this study to precisely control the fine structure and elemental composition of the final product. Consequently, the surface area of the HELHs is up to 380.5 m(2) g(-1). The current density of 100 mA cm(-2) is achieved in 1 m KOH at an overpotential of 259 mV, and, after 1000 h operation at the current density of 20 mA cm(-2), the catalytic performance shows no obvious deterioration. The high-entropy engineering and fine nanostructure control open opportunities to solve the problems of low intrinsic activity, very few active sites, instability, and low conductance during OER for LDH catalysts.
引用
收藏
页数:7
相关论文
共 36 条
  • [1] Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution
    Bai, Yuke
    Wu, Yu
    Zhou, Xichen
    Ye, Yifan
    Nie, Kaiqi
    Wang, Jiaou
    Xie, Miao
    Zhang, Zhixue
    Liu, Zhaojun
    Cheng, Tao
    Gao, Chuanbo
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] Delocalized Spin States in 2D Atomic Layers Realizing Enhanced Electrocatalytic Oxygen Evolution
    Chen, Shichuan
    Kang, Zhixiong
    Hu, Xin
    Zhang, Xiaodong
    Wang, Hui
    Xie, Junfeng
    Zheng, XuSheng
    Yan, Wensheng
    Pan, Bicai
    Xie, Yi
    [J]. ADVANCED MATERIALS, 2017, 29 (30)
  • [3] Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction
    Ding, Hui
    Liu, Hongfei
    Chu, Wangsheng
    Wu, Changzheng
    Xie, Yi
    [J]. CHEMICAL REVIEWS, 2021, 121 (21) : 13174 - 13212
  • [4] Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation
    Fan, Ke
    Chen, Hong
    Ji, Yongfei
    Huang, Hui
    Claesson, Per Martin
    Daniel, Quentin
    Philippe, Bertrand
    Rensmo, Hakan
    Li, Fusheng
    Luo, Yi
    Sun, Licheng
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [5] Defect-Rich High-Entropy Oxide Nanosheets for Efficient 5-Hydroxymethylfurfural Electrooxidation
    Gu, Kaizhi
    Wang, Dongdong
    Xie, Chao
    Wang, Tehua
    Huang, Gen
    Liu, Yanbo
    Zou, Yuqin
    Tao, Li
    Wang, Shuangyin
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (37) : 20253 - 20258
  • [6] Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation
    Gu, Kaizhi
    Zhu, Xiaoyan
    Wang, Dongdong
    Zhang, Nana
    Huang, Gen
    Li, Wei
    Long, Peng
    Tian, Jing
    Zou, Yuqin
    Wang, Yanyong
    Chen, Ru
    Wang, Shuangyin
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2021, 60 (60): : 121 - 126
  • [7] Earth-Abundant Heterogeneous Water Oxidation Catalysts
    Hunter, Bryan M.
    Gray, Harry B.
    Muller, Astrid M.
    [J]. CHEMICAL REVIEWS, 2016, 116 (22) : 14120 - 14136
  • [8] Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation
    Kang, Jianxin
    Qiu, Xiaoyi
    Hu, Qi
    Zhong, Jun
    Gao, Xiang
    Huang, Rong
    Wan, Chengzhang
    Liu, Li-Min
    Duan, Xiangfeng
    Guo, Lin
    [J]. NATURE CATALYSIS, 2021, 4 (12) : 1050 - 1058
  • [9] A solution-based route to compositionally complex metal oxide structures using high-entropy layered double hydroxides
    Kim, Miri
    Oh, Inseon
    Choi, Hyunkyung
    Jang, Wonsik
    Song, Jaejung
    Kim, Chul Sung
    Yoo, Jung-Woo
    Cho, Seungho
    [J]. CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (01):
  • [10] Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation
    Li, Pengsong
    Duan, Xinxuan
    Kuang, Yun
    Li, Yaping
    Zhang, Guoxin
    Liu, Wen
    Sun, Xiaoming
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (15)