Salt-shrinkage resistant poly(amidoxime) adsorbent for improved extraction of uranium from seawater

被引:23
|
作者
Luo, Guangsheng [1 ]
Ma, Yue [1 ]
Cao, Meng [1 ]
Feng, Lijuan [1 ]
Ai, Jiayi [1 ]
Zhang, Jiacheng [1 ]
Zhao, Shilei [1 ]
Liu, Tao [1 ]
Shi, Se [1 ]
Wang, Hui [1 ]
Yuan, Yihui [1 ]
Wang, Ning [1 ]
机构
[1] Hainan Univ, State Key Lab Marine Resources Utilizat South Chi, Haikou 570228, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
Uranium extraction; Salt shrinkage; Hydrophilicity; Polyacrylonitrile; Poly(amidoxime); RECOVERY; ACID; HYDROGELS; SURFACE; ADSORPTION; LANGMUIR; BEHAVIOR; ENERGY; RESIN;
D O I
10.1016/j.cej.2023.142569
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Utilization of the seawater uranium (U) resource is a prospective strategy to satisfy the requirements of nuclear energy industry. Poly(amidoxime) (PAO)-based adsorbents are the most prospective candidates for extracting seawater U resource. However, owing to its innate shortcoming of salt shrinkage in seawater, the channels be-tween the polymer chains in PAO-based adsorbents are shrinkage, hindering the entry of uranyl ions into the adsorbent. Therefore, amidoxime groups in PAO-based adsorbents are not utilized efficiently. Herein, a uni-versally applicable pre-hydrolysis strategy is designed to boost the U extraction performance of PAO-based ad-sorbents. Pre-hydrolyzed polyacrylonitrile is used to fabricate PAO with higher hydrophilicity, namely h-PAO. Due to the existence of more hydrophilic groups generated by the pre-hydrolysis process, h-PAO hydrogel ex-hibits enhanced interaction with water and reduced salt-shrinkage behavior compared with that of PAO hydrogel. As a result, h-PAO hydrogel exhibits increased (6.5-fold) seawater migration ability to facilitate the transport of uranyl ions to the functional groups inside the adsorbent. In filtered real seawater, h-PAO hydrogel shows 60.3% enhanced U extraction capacity, which is 9.86 mg g(-1), and more than 1-fold accelerated U extraction rate. Collectively, our results indicate that the pre-hydrolysis strategy is a promising approach to boost the U extraction performance of PAO-based adsorbents in real seawater.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Poly(amidoxime)/polyzwitterionic semi-interpenetrating network hydrogel with robust salt-shrinkage resistance for enhanced uranium extraction from seawater
    Cao, Meng
    Luo, Guangsheng
    Peng, Qin
    Wang, Lushuang
    Wang, Yue
    Zhao, Shilei
    Wang, Hui
    Zhang, Jiacheng
    Yuan, Yihui
    Wang, Ning
    CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [2] Alternative Alkaline Conditioning of Amidoxime Based Adsorbent for Uranium Extraction from Seawater
    Das, S.
    Liao, W. -P.
    Byers, M. Flicker
    Tsouris, C.
    Janke, C. J.
    Mayes, R. T.
    Schneider, E.
    Kuo, L. -J.
    Wood, J. R.
    Gill, G. A.
    Dai, S.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (15) : 4303 - 4312
  • [3] Sunlight Polymerization of Poly(amidoxime) Hydrogel Membrane for Enhanced Uranium Extraction from Seawater
    Ma, Chunxin
    Gao, Jinxiang
    Wang, Dong
    Yuan, Yihui
    Wen, Jun
    Yan, Bingjie
    Zhao, Shilei
    Zhao, Xuemei
    Sun, Ye
    Wang, Xiaolin
    Wang, Ning
    ADVANCED SCIENCE, 2019, 6 (13)
  • [4] Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater
    Shi, Se
    Qian, Yongxin
    Mei, Pingping
    Yuan, Yihui
    Jia, Na
    Dong, Mengyao
    Fan, Jincheng
    Guo, Zhanhu
    Wang, Ning
    NANO ENERGY, 2020, 71 (71)
  • [5] Hydrophilic modification and synergistic interaction of phosphate-amidoxime adsorbent for enhanced uranium extraction from seawater
    Lv, Lina
    Deng, Tingting
    Wang, Lu
    Peng, Hao
    Chen, He
    Li, Xiaoyu
    Chi, Fangting
    DESALINATION, 2025, 600
  • [6] Properties and evaluation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater
    Xing Zhe
    Hu JiangTao
    Wang MouHua
    Zhang WenLi
    Li ShiNeng
    Gao QianHong
    Wu GuoZhong
    SCIENCE CHINA-CHEMISTRY, 2013, 56 (11) : 1504 - 1509
  • [7] Poly(amidoxime)-graft-magnetic chitosan for highly efficient and selective uranium extraction from seawater
    Zhang, Yizhe
    Cai, Tingting
    Zhao, Zhiwei
    Han, Bing
    CARBOHYDRATE POLYMERS, 2023, 301
  • [8] A poly(amidoxime)-modified MOF macroporous membrane for high-efficient uranium extraction from seawater
    Wang, Jiawen
    Sun, Ye
    Zhao, Xuemei
    Chen, Lin
    Peng, Shuyi
    Ma, Chunxin
    Duan, Gaigai
    Liu, Zhenzhong
    Wang, Hui
    Yuan, Yihui
    Wang, Ning
    E-POLYMERS, 2022, 22 (01) : 399 - 410
  • [9] Hydrazide and amidoxime dual functional membranes for uranium extraction from seawater
    Yao, Yunyou
    Liao, Jian
    Xu, Xiao
    Huang, Chen
    Fu, Mengtao
    Chen, Kang
    Ma, Lin
    Han, Jiaguang
    Xu, Lu
    Ma, Hongjuan
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (17) : 10528 - 10538
  • [10] Branched fibrous amidoxime adsorbent with ultrafast adsorption rate and high amidoxime utilization for uranium extraction from seawater
    Ren, Wan-Ning
    Feng, Xin-Xin
    He, Yu-Long
    Wang, Ming-Lei
    Hong, Wan-Feng
    Han, Hong-Wei
    Hu, Jiang-Tao
    Wu, Guo-Zhong
    NUCLEAR SCIENCE AND TECHNIQUES, 2023, 34 (06)