Large-scale asymptotics of velocity-jump processes and nonlocal Hamilton-Jacobi equations

被引:1
作者
Bouin, Emeric [1 ,2 ]
Calvez, Vincent [3 ,4 ,5 ]
Grenier, Emmanuel [6 ,7 ,8 ]
Nadin, Gregoire [9 ,10 ]
机构
[1] CNRS, CEREMADE, UMR 7534, Pl Lattre de Tassigny, Paris, France
[2] Univ Paris 09, PSL Univ, Pl Lattre de Tassigny, Paris, France
[3] CNRS, Inst Camille Jordan, UMR 5208, Lyon, France
[4] Univ Claude Bernard Lyon 1, Lyon, France
[5] INRIA, Project Team Dracula, Lyon, France
[6] CNRS, Unite Math Pures & Appl, UMR 5669, Lyon, France
[7] Ecole Normale Super Lyon, Lyon, France
[8] INRIA, Project Team NUMED, Lyon, France
[9] CNRS, UMR 7598, Lab Jacques Louis Lions, Paris, France
[10] Sorbonne Univ, Paris, France
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2023年 / 108卷 / 01期
基金
欧盟地平线“2020”;
关键词
FRONT PROPAGATION PROBLEMS; WEAKLY COUPLED SYSTEMS; VISCOSITY SOLUTIONS; GEOMETRIC OPTICS; TRAVELING FRONTS; LARGE DEVIATIONS; BOUNDED DOMAINS; PDE APPROACH; DIFFUSION; UNIQUENESS;
D O I
10.1112/jlms.12742
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a simple velocity jump process in the regime of large deviation asymptotics. New velocities are taken randomly at a constant, large, rate from a Gaussian distribution with vanishing variance. The Kolmogorov forward equation associated with this process is the linear BGK kinetic transport equation. We derive a new type of Hamilton-Jacobi equation which is nonlocal with respect to the velocity variable. We introduce a suitable notion of viscosity solution, and we prove well-posedness in the viscosity sense. We also prove convergence of the logarithmic transformation toward this limit problem. Furthermore, we identify the variational formulation of the solution by means of an action functional supported on piecewise linear curves. As an application of this theory, we compute the exact rate of acceleration in a kinetic version of the celebrated F-KPP equation in the one-dimensional case.
引用
收藏
页码:141 / 189
页数:49
相关论文
共 58 条
[1]   Finite Difference Methods for Mean Field Games [J].
Achdou, Yves .
HAMILTON-JACOBI EQUATIONS: APPROXIMATIONS, NUMERICAL ANALYSIS AND APPLICATIONS, CETRARO, ITALY 2011, 2013, 2074 :1-47
[2]  
Alvarez O, 2005, INTERFACE FREE BOUND, V7, P415
[3]   Viscosity solutions of nonlinear integro-differential equations [J].
Alvarez, O ;
Tourin, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (03) :293-317
[4]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[5]  
Awatif S., 1991, COMMUN PART DIFF EQ, V16, P1057
[6]   WAVE-FRONT PROPAGATION FOR REACTION-DIFFUSION SYSTEMS OF PDE [J].
BARLES, G ;
EVANS, LC ;
SOUGANDIS, PE .
DUKE MATHEMATICAL JOURNAL, 1990, 61 (03) :835-858
[7]  
BARLES G, 1987, ESAIM-MATH MODEL NUM, V21, P557
[8]  
Barles G, 2003, INTERFACE FREE BOUND, V5, P239
[9]   DETERMINISTIC IMPULSE CONTROL-PROBLEMS [J].
BARLES, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (03) :419-432
[10]   Uniqueness results for nonlocal Hamilton-Jacobi equations [J].
Barles, Guy ;
Cardaliaguet, Pierre ;
Ley, Olivier ;
Monteillet, Aurelien .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (05) :1261-1287