LEHMER'S PROBLEM AND SPLITTING OF RATIONAL PRIMES IN NUMBER FIELDS

被引:2
作者
Prasad, G. [1 ]
Kumar, K. Senthil [1 ]
机构
[1] OCC Homi Bhabha Natl Inst, Natl Inst Sci Educ & Res, Khurja 752050, Orissa, India
关键词
Lehmer's problem; Mahler measure; absolute Weil height; prime factorization; ramification; POLYNOMIALS;
D O I
10.1007/s10474-023-01326-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha be a non-zero algebraic integer of degree d which is not a root of unity. We prove that, if there exists an odd prime p with either (1) p <= d+ 1 and pO(Q(alpha)) = P1 P2 ... P-d, where P-1,..., P-d are distinct prime ideals of O-Q(alpha), or (2) p <= root d and pO(Q(alpha)) = P(1)(e1)P2(e2)... P-g(eg), where max(1 <= i <= g){ei} <= p and Sigma(g)(i=1) ei = d, then M(alpha) >= p/2. We also prove that if the residual degrees of primes in O-Q(alpha) which are lying above 2 are 1, then M(alpha) >= 2(1/4). This generalizes a result of Garza.
引用
收藏
页码:349 / 358
页数:10
相关论文
共 17 条
[11]  
Mossinghoff M. J., LISTS POLYNOMIALS SM
[12]  
Mossinghoff MJ, 1998, MATH COMPUT, V67, P1697, DOI 10.1090/S0025-5718-98-01006-0
[13]  
Neukirch J., 1999, Algebraic number theory, Grundlehren der mathmatischen Wissenschaften, 322
[14]   Small totally p-adic algebraic numbers [J].
Pottmeyer, Lukas .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (10) :2687-2697
[15]   New methods providing high degree polynomials with small Mahler measure [J].
Rhin, G ;
Sac-Épée, JM .
EXPERIMENTAL MATHEMATICS, 2003, 12 (04) :457-461
[16]  
Smyth Smy71 C. J., 1971, B LOND MATH SOC, V3, P169
[17]  
Waldschmidt M., 2000, Diophantine Approximation on Linear Algebraic Groups