LEHMER'S PROBLEM AND SPLITTING OF RATIONAL PRIMES IN NUMBER FIELDS

被引:2
作者
Prasad, G. [1 ]
Kumar, K. Senthil [1 ]
机构
[1] OCC Homi Bhabha Natl Inst, Natl Inst Sci Educ & Res, Khurja 752050, Orissa, India
关键词
Lehmer's problem; Mahler measure; absolute Weil height; prime factorization; ramification; POLYNOMIALS;
D O I
10.1007/s10474-023-01326-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha be a non-zero algebraic integer of degree d which is not a root of unity. We prove that, if there exists an odd prime p with either (1) p <= d+ 1 and pO(Q(alpha)) = P1 P2 ... P-d, where P-1,..., P-d are distinct prime ideals of O-Q(alpha), or (2) p <= root d and pO(Q(alpha)) = P(1)(e1)P2(e2)... P-g(eg), where max(1 <= i <= g){ei} <= p and Sigma(g)(i=1) ei = d, then M(alpha) >= p/2. We also prove that if the residual degrees of primes in O-Q(alpha) which are lying above 2 are 1, then M(alpha) >= 2(1/4). This generalizes a result of Garza.
引用
收藏
页码:349 / 358
页数:10
相关论文
共 17 条
  • [1] ADLER RL, 1979, MEM AM MATH SOC, V20, P1
  • [2] A lower bound for the height in Abelian extensions
    Amoroso, F
    Dvornicich, R
    [J]. JOURNAL OF NUMBER THEORY, 2000, 80 (02) : 260 - 272
  • [3] BOYD DW, 1980, MATH COMPUT, V35, P1361, DOI 10.1090/S0025-5718-1980-0583514-9
  • [4] DOBROWOLSKI E., 1979, ACTA ARITH, V34, P391
  • [5] Integer transfinite diameter and polynomials with small Mahler measure
    Flammang, Valerie
    Rhin, Georges
    Sac-Epee, Jean-Marc
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (255) : 1527 - 1540
  • [6] The Lehmer strength bounds for total ramification
    Garza, John
    [J]. ACTA ARITHMETICA, 2009, 137 (02) : 171 - 176
  • [7] KRONECKER L, 1857, J REINE ANGEW MATH, V53
  • [8] Factorization of certain cyclotomic functions
    Lehmer, DH
    [J]. ANNALS OF MATHEMATICS, 1933, 34 : 461 - 479
  • [9] Marcus D. A., 1977, NUMBER FIELDS
  • [10] Mignotte M., 1978, SEMINAIRE DELANGE PI, V2