An R-R-type MYB transcription factor promotes non-climacteric pepper fruit carotenoid pigment biosynthesis

被引:27
作者
Song, Jiali [1 ]
Sun, Binmei [1 ]
Chen, Changming [1 ,2 ]
Ning, Zuoyang [1 ]
Zhang, Shuanglin [1 ]
Cai, Yutong [1 ]
Zheng, Xiongjie [3 ]
Cao, Bihao [1 ,2 ]
Chen, Guoju [1 ]
Jin, Dan [4 ]
Li, Bosheng [5 ]
Bian, Jianxin [5 ]
Lei, Jianjun [1 ,2 ]
He, Hang [5 ]
Zhu, Zhangsheng [1 ,2 ]
机构
[1] South China Agr Univ, Coll Hort, Key Lab Biol & Germplasm Enhancement Hort Crops So, Minist Agr & Rural Areas, Guangzhou 510642, Peoples R China
[2] Guangdong Lab Lingnan Modern Agr, Guangzhou 510642, Peoples R China
[3] King Abdullah Univ Sci & Technol KAUST, Ctr Desert Agr, Div Biol & Environm Sci & Engn, Thuwal 239556900, Saudi Arabia
[4] Southwest Univ, Biotechnol Res Ctr, Chongqing 401120, Peoples R China
[5] Peking Univ, Inst Adv Agr Sci, Weifang 261325, Peoples R China
基金
中国国家自然科学基金;
关键词
non-climacteric fruit; pepper; pigmentation; carotenoid; transcription factor; ABA; ABSCISIC-ACID; PHYTOENE-SYNTHASE; PROVIDES INSIGHTS; GENOME SEQUENCE; CAPSICUM; TOMATO; STRESS; EVOLUTION; ACCUMULATION; CHLOROPHYLL;
D O I
10.1111/tpj.16257
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Carotenoids are major accessory pigments in the chloroplast, and they also act as phytohormones and volatile compound precursors to influence plant development and confer characteristic colours, affecting both the aesthetic and nutritional value of fruits. Carotenoid pigmentation in ripening fruits is highly dependent on developmental trajectories. Transcription factors incorporate developmental and phytohormone signalling to regulate the biosynthesis process. By contrast to the well-established pathways regulating ripening-related carotenoid biosynthesis in climacteric fruit, carotenoid regulation in non-climacteric fruit is poorly understood. Capsanthin is the primary carotenoid of non-climacteric pepper (Capsicum) fruit; its biosynthesis is tightly associated with fruit ripening, and it confers red pigmentation to the ripening fruit. In the present study, using a coexpression analysis, we identified an R-R-type MYB transcription factor, DIVARICATA1, and demonstrated its role in capsanthin biosynthesis. DIVARICATA1 encodes a nucleus-localised protein that functions primarily as a transcriptional activator. Functional analyses showed that DIVARICATA1 positively regulates carotenoid biosynthetic gene (CBG) transcript levels and capsanthin levels by directly binding to and activating CBG promoter transcription. Furthermore, an association analysis revealed a significant positive association between DIVARICATA1 transcription level and capsanthin content. ABA promotes capsanthin biosynthesis in a DIVARICATA1-dependent manner. Comparative transcriptomic analysis of DIVARICATA1 in Solanaceae plants showed that its function likely differs among species. Moreover, the pepper DIVARICATA1 gene could be regulated by the ripening regulator MADS-RIN. The present study illustrates the transcriptional regulation of capsanthin biosynthesis and offers a target for breeding peppers with high red colour intensity.
引用
收藏
页码:724 / 741
页数:18
相关论文
共 50 条
  • [11] An R2R3-MYB Transcription Factor Regulates Capsaicinoid Biosynthesis
    Arce-Rodriguez, Magda L.
    Ochoa-Alejoa, Neftali
    PLANT PHYSIOLOGY, 2017, 174 (03) : 1359 - 1370
  • [12] EbMYBP1, a R2R3-MYB transcription factor, promotes flavonoid biosynthesis in Erigeron breviscapus
    Zhao, Yan
    Zhang, Guanghui
    Tang, Qingyan
    Song, Wanling
    Gao, Qingqing
    Xiang, Guisheng
    Li, Xia
    Liu, Guanze
    Fan, Wei
    Li, Xiaoning
    Yang, Shengchao
    Zhai, Chenxi
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [13] Alternative Splicing in the Anthocyanin Fruit Gene Encoding an R2R3 MYB Transcription Factor Affects Anthocyanin Biosynthesis in Tomato Fruits
    Colanero, Sara
    Tagliani, Andrea
    Perata, Pierdomenico
    Gonzali, Silvia
    PLANT COMMUNICATIONS, 2020, 1 (01)
  • [14] Identification of CaPs locus involving in purple stripe formation on unripe fruit, reveals allelic variation and alternative splicing of R2R3-MYB transcription factor in pepper (Capsicum annuum L.)
    Li, Ning
    Liu, Yabo
    Yin, Yanxu
    Gao, Shenghua
    Wu, Fangyuan
    Yu, Chuying
    Wang, Fei
    Kang, Byoung-Cheorl
    Xu, Kai
    Jiao, Chunhai
    Yao, Minghua
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [15] R2R3-MYB transcription factor SmMYB75 promotes anthocyanin biosynthesis in eggplant (Solanum melongena L.)
    Shi, Suli
    Liu, Yang
    He, Yongjun
    Li, Linzhi
    Li, Dalu
    Chen, Huoying
    SCIENTIA HORTICULTURAE, 2021, 282
  • [16] Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor
    Shan-Shan Niu
    Chang-Jie Xu
    Wang-Shu Zhang
    Bo Zhang
    Xian Li
    Kui Lin-Wang
    Ian B. Ferguson
    Andrew C. Allan
    Kun-Song Chen
    Planta, 2010, 231 : 887 - 899
  • [17] R2R3-MYB transcription factor PpMYB17 positively regulates flavonoid biosynthesis in pear fruit
    Apekshika T. Premathilake
    Junbei Ni
    Songling Bai
    Ruiyan Tao
    Mudassar Ahmad
    Yuanwen Teng
    Planta, 2020, 252
  • [18] MaMYB4, an R2R3-MYB Repressor Transcription Factor, Negatively Regulates the Biosynthesis of Anthocyanin in Banana
    Deng, Gui-Ming
    Zhang, Sen
    Yang, Qiao-Song
    Gao, Hui-Jun
    Sheng, Ou
    Bi, Fang-Cheng
    Li, Chun-Yu
    Dong, Tao
    Yi, Gan-Jun
    He, Wei-Di
    Hu, Chun-Hua
    FRONTIERS IN PLANT SCIENCE, 2021, 11
  • [19] Characterization of a Citrus R2R3-MYB Transcription Factor that Regulates the Flavonol and Hydroxycinnamic Acid Biosynthesis
    Liu, Chaoyang
    Long, Jianmei
    Zhu, Kaijie
    Liu, Linlin
    Yang, Wei
    Zhang, Hongyan
    Li, Li
    Xu, Qiang
    Deng, Xiuxin
    SCIENTIFIC REPORTS, 2016, 6
  • [20] An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean
    Chu, Shanshan
    Wang, Jiao
    Zhu, Ying
    Liu, Shulin
    Zhou, Xiaoqiong
    Zhang, Huairen
    Wang, Chun-e
    Yang, Wenming
    Tian, Zhixi
    Cheng, Hao
    Yu, Deyue
    PLOS GENETICS, 2017, 13 (05):