A Blockchain-Based Model Migration Approach for Secure and Sustainable Federated Learning in IoT Systems

被引:31
|
作者
Zhang, Cheng [1 ]
Xu, Yang [1 ]
Elahi, Haroon [2 ]
Zhang, Deyu [3 ]
Tan, Yunlin [1 ]
Chen, Junxian [1 ]
Zhang, Yaoxue [1 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[2] Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden
[3] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaborative work; Training; Blockchains; Computational modeling; Data models; Servers; Costs; Blockchain; federated learning; Internet of Things (IoT); security; sustainable computing; training acceleration; INTERNET; THINGS;
D O I
10.1109/JIOT.2022.3171926
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model migration can accelerate model convergence during federated learning on the Internet of Things (IoT) devices and reduce training costs by transferring feature extractors from fast to slow devices, which, in turn, enables sustainable computing. However, malicious or lazy devices may migrate the fake models or resist sharing models for their benefit, reducing the desired efficiency and reliability of a federated learning system. To this end, this work presents a blockchain-based model migration approach for resource-constrained IoT systems. The proposed approach aims to achieve secure model migration and speed up model training while minimizing computation cost. We first develop an incentive mechanism considering the economic benefits of fast devices, which breaks the Nash equilibrium established by lazy devices and encourages capable devices to train and share models. Second, we design a clustering-based algorithm for identifying malicious devices and preventing them from defrauding incentives. Third, we use blockchain to ensure trustworthiness in model migration and incentive processes. Blockchain records the interaction between the central server and IoT devices and runs the incentive algorithm without exposing the devices' private data. Theoretical analysis and experimental results show that the proposed approach can accelerate federated learning rates, reduce model training computation costs to increase sustainability, and resist malicious attacks.
引用
收藏
页码:6574 / 6585
页数:12
相关论文
共 50 条
  • [31] Blockchain-Based Swarm Learning for the Mitigation of Gradient Leakage in Federated Learning
    Madni, Hussain Ahmad
    Umer, Rao Muhammad
    Foresti, Gian Luca
    IEEE ACCESS, 2023, 11 : 16549 - 16556
  • [32] A Survey on Blockchain-Based Federated Learning
    Wu, Lang
    Ruan, Weijian
    Hu, Jinhui
    He, Yaobin
    Pau, Giovanni
    FUTURE INTERNET, 2023, 15 (12)
  • [33] Privacy-preserving in Blockchain-based Federated Learning systems
    Sameera, K. M.
    Nicolazzo, Serena
    Arazzi, Marco
    Nocera, Antonino
    Rehiman, K. A. Rafidha
    Vinod, P.
    Conti, Mauro
    COMPUTER COMMUNICATIONS, 2024, 222 : 38 - 67
  • [34] Blockchain-based Secure Federated Learning with Incentives: An Incomplete Information Static Game Approach
    Cai, Lingyi
    Dai, Yueyue
    Hu, Qiwei
    Zhou, Jiaxi
    Jiang, Tao
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 2004 - 2009
  • [35] ASSERT: A Blockchain-Based Architectural Approach for Engineering Secure Self-Adaptive IoT Systems
    Alkhabbas, Fahed
    Alsadi, Mohammed
    Alawadi, Sadi
    Awaysheh, Feras M.
    Kebande, Victor R.
    Moghaddam, Mahyar T.
    SENSORS, 2022, 22 (18)
  • [36] A blockchain-based federated learning mechanism for privacy preservation of healthcare IoT data
    Moulahi, Wided
    Jdey, Imen
    Moulahi, Tarek
    Alawida, Moatsum
    Alabdulatif, Abdulatif
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 167
  • [37] Decentralized IoT data sharing: A blockchain-based federated learning approach with joint optimizations for efficiency and privacy
    Cheng, Ziwen
    Liu, Yi
    Wu, Chao
    Pan, Yongqi
    Zhao, Liushun
    Deng, Xin
    Zhu, Cheng
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 160 : 547 - 563
  • [38] Cybersecurity for Blockchain-Based IoT Systems: A Review
    Alajlan, Razan
    Alhumam, Norah
    Frikha, Mounir
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [39] Blockchain-Based Federated Learning: A Survey and New Perspectives
    Ning, Weiguang
    Zhu, Yingjuan
    Song, Caixia
    Li, Hongxia
    Zhu, Lihui
    Xie, Jinbao
    Chen, Tianyu
    Xu, Tong
    Xu, Xi
    Gao, Jiwei
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [40] Blockchain-based federated learning methodologies in smart environments
    Dong Li
    Zai Luo
    Bo Cao
    Cluster Computing, 2022, 25 : 2585 - 2599