A Blockchain-Based Model Migration Approach for Secure and Sustainable Federated Learning in IoT Systems

被引:31
|
作者
Zhang, Cheng [1 ]
Xu, Yang [1 ]
Elahi, Haroon [2 ]
Zhang, Deyu [3 ]
Tan, Yunlin [1 ]
Chen, Junxian [1 ]
Zhang, Yaoxue [1 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[2] Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden
[3] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaborative work; Training; Blockchains; Computational modeling; Data models; Servers; Costs; Blockchain; federated learning; Internet of Things (IoT); security; sustainable computing; training acceleration; INTERNET; THINGS;
D O I
10.1109/JIOT.2022.3171926
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model migration can accelerate model convergence during federated learning on the Internet of Things (IoT) devices and reduce training costs by transferring feature extractors from fast to slow devices, which, in turn, enables sustainable computing. However, malicious or lazy devices may migrate the fake models or resist sharing models for their benefit, reducing the desired efficiency and reliability of a federated learning system. To this end, this work presents a blockchain-based model migration approach for resource-constrained IoT systems. The proposed approach aims to achieve secure model migration and speed up model training while minimizing computation cost. We first develop an incentive mechanism considering the economic benefits of fast devices, which breaks the Nash equilibrium established by lazy devices and encourages capable devices to train and share models. Second, we design a clustering-based algorithm for identifying malicious devices and preventing them from defrauding incentives. Third, we use blockchain to ensure trustworthiness in model migration and incentive processes. Blockchain records the interaction between the central server and IoT devices and runs the incentive algorithm without exposing the devices' private data. Theoretical analysis and experimental results show that the proposed approach can accelerate federated learning rates, reduce model training computation costs to increase sustainability, and resist malicious attacks.
引用
收藏
页码:6574 / 6585
页数:12
相关论文
共 50 条
  • [1] Secure and Efficient Blockchain-Based Federated Learning Approach for VANETs
    Asad, Muhammad
    Shaukat, Saima
    Javanmardi, Ehsan
    Nakazato, Jin
    Bao, Naren
    Tsukada, Manabu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (05): : 9047 - 9055
  • [2] Blockchain-based Secure Client Selection in Federated Learning
    Nguyen, Truc
    Thai, Phuc
    Jeter, Tre R.
    Dinht, Thang N.
    Thai, My T.
    2022 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN AND CRYPTOCURRENCY (IEEE ICBC 2022), 2022,
  • [3] Blockchain-based Secure Federated Learning with Incentives: An Incomplete Information Static Game Approach
    Cai, Lingyi
    Dai, Yueyue
    Hu, Qiwei
    Zhou, Jiaxi
    Jiang, Tao
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 2004 - 2009
  • [4] BlockDeepNet: A Blockchain-Based Secure Deep Learning for IoT Network
    Rathore, Shailendra
    Pan, Yi
    Park, Jong Hyuk
    SUSTAINABILITY, 2019, 11 (14)
  • [5] A Blockchain-Based Security Model for IoT Systems
    Chen, Bing
    Liu, Ding
    Zhang, Ting
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2022, 21 (02)
  • [6] A Blockchain-based federated learning framework for secure aggregation and fair incentives
    Yang, XiaoHui
    Li, TianChang
    CONNECTION SCIENCE, 2024, 36 (01)
  • [7] Secure Data Sharing in Federated Learning through Blockchain-Based Aggregation
    Liu, Bowen
    Tang, Qiang
    FUTURE INTERNET, 2024, 16 (04)
  • [8] An explainable federated learning and blockchain-based secure credit modeling method
    Yang, Fan
    Abedin, mmad Zoynul
    Hajek, Petr
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 317 (02) : 449 - 467
  • [9] Blockchain-Based Federated Learning for Device Failure Detection in Industrial IoT
    Zhang, Weishan
    Lu, Qinghua
    Yu, Qiuyu
    Li, Zhaotong
    Liu, Yue
    Lo, Sin Kit
    Chen, Shiping
    Xu, Xiwei
    Zhu, Liming
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (07): : 5926 - 5937
  • [10] CoCFL: A Lightweight Blockchain-based Federated Learning Framework in IoT Context
    Wang, Jianrong
    Shi, Yang
    Hu, Dengcheng
    Li, Keqiu
    Liu, Xiulong
    2024 IEEE 44TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS 2024, 2024, : 1086 - 1096