Physics-informed graph neural network for spatial-temporal production forecasting

被引:14
|
作者
Liu, Wendi [1 ]
Pyrcz, Michael J. [1 ,2 ]
机构
[1] Univ Texas Austin, Cockrell Sch Engn, Hildebrand Dept Petr & Geosyst Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX USA
来源
关键词
Graph neural network; Capacitance resistance models; Physics-informed neural network; Production forecasting; RESERVOIR CONNECTIVITY;
D O I
10.1016/j.geoen.2023.211486
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Production forecast based on historical data provides essential value for developing hydrocarbon resources. Classic history matching workflow is often computationally intense and geometry-dependent. Analytical data -driven models like decline curve analysis (DCA) and capacitance resistance models (CRM) provide a grid-free solution with a relatively simple model capable of integrating some degree of physics constraints. However, the analytical solution may ignore subsurface geometries and is appropriate only for specific flow regimes and otherwise may violate physics conditions resulting in degraded model prediction accuracy. Machine learning -based predictive model for time series provides non-parametric, assumption-free solutions for production fore-casting, but are prone to model overfit due to training data sparsity; therefore may be accurate over short prediction time intervals.We propose a grid-free, physics-informed graph neural network (PI-GNN) for production forecasting. A customized graph convolution layer aggregates neighborhood information from historical data and has the flexibility to integrate domain expertise into the data-driven model. The proposed method relaxes the depen-dence on close-form solutions like CRM and honors the given physics-based constraints. Our proposed method is robust, with improved performance and model interpretability relative to the conventional CRM and GNN baseline without physics constraints.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Adaptive Graph Spatial-Temporal Transformer Network for Traffic Forecasting
    Feng, Aosong
    Tassiulas, Leandros
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3933 - 3937
  • [32] Enhanced physics-informed generative adversarial network to estimate spatial-temporal distribution of shear stress in carotid arteries
    Wang, Chaoyu
    Zhao, Wentao
    Ruan, Zhikai
    Pu, Zhaofu
    Wan, Mingxi
    Fu, Chaoying
    Wang, Diya
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [33] Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting
    Song, Chao
    Lin, Youfang
    Guo, Shengnan
    Wan, Huaiyu
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 914 - 921
  • [34] Conditional Physics-Informed Graph Neural Network for Fractional Flow Reserve Assessment
    Xie, Baihong
    Liu, Xiujian
    Zhang, Heye
    Xu, Chenchu
    Zeng, Tieyong
    Yuan, Yixuan
    Yang, Guang
    Gao, Zhifan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VII, 2023, 14226 : 110 - 120
  • [35] Multi-scale graph neural network for physics-informed fluid simulation
    Wei, Lan
    Freris, Nikolaos M.
    VISUAL COMPUTER, 2025, 41 (02): : 1171 - 1181
  • [36] Short-term load forecasting using spatial-temporal embedding graph neural network
    Wei, Chuyuan
    Pi, Dechang
    Ping, Mingtian
    Zhang, Haopeng
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 225
  • [37] Solving spatiotemporal partial differential equations with Physics-informed Graph Neural Network
    Xiang, Zixue
    Peng, Wei
    Yao, Wen
    Liu, Xu
    Zhang, Xiaoya
    APPLIED SOFT COMPUTING, 2024, 155
  • [38] Spatial-temporal load forecasting of electric vehicle charging stations based on graph neural network
    Zhang, Yanyu
    Liu, Chunyang
    Rao, Xinpeng
    Zhang, Xibeng
    Zhou, Yi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 821 - 836
  • [39] Multi-view Cascading Spatial-Temporal Graph Neural Network for Traffic Flow Forecasting
    Liu, Zibo
    Fu, Kaiqun
    Liu, Xiaotong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 605 - 616
  • [40] Physics-informed graph neural network emulation of soft-tissue mechanics
    Dalton, David
    Husmeier, Dirk
    Gao, Hao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417