Physics-informed graph neural network for spatial-temporal production forecasting

被引:14
|
作者
Liu, Wendi [1 ]
Pyrcz, Michael J. [1 ,2 ]
机构
[1] Univ Texas Austin, Cockrell Sch Engn, Hildebrand Dept Petr & Geosyst Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX USA
来源
GEOENERGY SCIENCE AND ENGINEERING | 2023年 / 223卷
关键词
Graph neural network; Capacitance resistance models; Physics-informed neural network; Production forecasting; RESERVOIR CONNECTIVITY;
D O I
10.1016/j.geoen.2023.211486
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Production forecast based on historical data provides essential value for developing hydrocarbon resources. Classic history matching workflow is often computationally intense and geometry-dependent. Analytical data -driven models like decline curve analysis (DCA) and capacitance resistance models (CRM) provide a grid-free solution with a relatively simple model capable of integrating some degree of physics constraints. However, the analytical solution may ignore subsurface geometries and is appropriate only for specific flow regimes and otherwise may violate physics conditions resulting in degraded model prediction accuracy. Machine learning -based predictive model for time series provides non-parametric, assumption-free solutions for production fore-casting, but are prone to model overfit due to training data sparsity; therefore may be accurate over short prediction time intervals.We propose a grid-free, physics-informed graph neural network (PI-GNN) for production forecasting. A customized graph convolution layer aggregates neighborhood information from historical data and has the flexibility to integrate domain expertise into the data-driven model. The proposed method relaxes the depen-dence on close-form solutions like CRM and honors the given physics-based constraints. Our proposed method is robust, with improved performance and model interpretability relative to the conventional CRM and GNN baseline without physics constraints.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A PHYSICS-INFORMED NEURAL NETWORK-BASED APPROACH FOR THE SPATIAL UPSAMPLING OF SPHERICAL MICROPHONE ARRAYS
    Miotello, Federico
    Terminiello, Ferdinando
    Pezzoli, Mirco
    Bemardini, Alberto
    Antonacci, Fabio
    Sarti, Augusto
    2024 18TH INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT, IWAENC 2024, 2024, : 215 - 219
  • [32] Investigation on aortic hemodynamics based on physics-informed neural network
    Du, Meiyuan
    Zhang, Chi
    Xie, Sheng
    Pu, Fan
    Zhang, Da
    Li, Deyu
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 11545 - 11567
  • [33] Adaptive Hybrid Spatial-Temporal Graph Neural Network for Cellular Traffic Prediction
    Wang, Xing
    Yang, Kexin
    Wang, Zhendong
    Feng, Junlan
    Zhu, Lin
    Zhao, Juan
    Deng, Chao
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4026 - 4032
  • [34] Application of physics-informed neural network in the analysis of hydrodynamic lubrication
    Yang Zhao
    Liang Guo
    Patrick Pat Lam Wong
    Friction, 2023, 11 : 1253 - 1264
  • [35] A Physics-Informed Neural Network-Based Waveguide Eigenanalysis
    Khan, Md Rayhan
    Zekios, Constantinos L.
    Bhardwaj, Shubhendu
    Georgakopoulos, Stavros V.
    IEEE ACCESS, 2024, 12 : 120777 - 120787
  • [36] Application of physics-informed neural network in the analysis of hydrodynamic lubrication
    Zhao, Yang
    Guo, Liang
    Wong, Patrick Pat Lam
    FRICTION, 2023, 11 (07) : 1253 - 1264
  • [37] Physics-informed neural network classification framework for reliability analysis
    Shi, Yan
    Beer, Michael
    Expert Systems with Applications, 2024, 258
  • [38] Isogeometric analysis-based physics-informed graph neural network for studying traffic jam in neurons
    Li, Angran
    Zhang, Yongjie Jessica
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 403
  • [39] Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting
    Fang, Zheng
    Long, Qingqing
    Song, Guojie
    Xie, Kunqing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 364 - 373
  • [40] Physics_GNN: Towards Physics-informed graph neural network for the real-time simulation of obstructed gas explosion
    Shi, Jihao
    Li, Junjie
    Tam, Wai Cheong
    Gardoni, Paolo
    Usmani, Asif Sohail
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 256