Physics-informed graph neural network for spatial-temporal production forecasting

被引:14
|
作者
Liu, Wendi [1 ]
Pyrcz, Michael J. [1 ,2 ]
机构
[1] Univ Texas Austin, Cockrell Sch Engn, Hildebrand Dept Petr & Geosyst Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX USA
来源
关键词
Graph neural network; Capacitance resistance models; Physics-informed neural network; Production forecasting; RESERVOIR CONNECTIVITY;
D O I
10.1016/j.geoen.2023.211486
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Production forecast based on historical data provides essential value for developing hydrocarbon resources. Classic history matching workflow is often computationally intense and geometry-dependent. Analytical data -driven models like decline curve analysis (DCA) and capacitance resistance models (CRM) provide a grid-free solution with a relatively simple model capable of integrating some degree of physics constraints. However, the analytical solution may ignore subsurface geometries and is appropriate only for specific flow regimes and otherwise may violate physics conditions resulting in degraded model prediction accuracy. Machine learning -based predictive model for time series provides non-parametric, assumption-free solutions for production fore-casting, but are prone to model overfit due to training data sparsity; therefore may be accurate over short prediction time intervals.We propose a grid-free, physics-informed graph neural network (PI-GNN) for production forecasting. A customized graph convolution layer aggregates neighborhood information from historical data and has the flexibility to integrate domain expertise into the data-driven model. The proposed method relaxes the depen-dence on close-form solutions like CRM and honors the given physics-based constraints. Our proposed method is robust, with improved performance and model interpretability relative to the conventional CRM and GNN baseline without physics constraints.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Attentive graph structure learning embedded in deep spatial-temporal graph neural network for traffic forecasting
    Pritam Bikram
    Shubhajyoti Das
    Arindam Biswas
    Applied Intelligence, 2024, 54 : 2716 - 2749
  • [22] Spatial-temporal dynamic semantic graph neural network
    Rui Zhang
    Fei Xie
    Rui Sun
    Lei Huang
    Xixiang Liu
    Jianjun Shi
    Neural Computing and Applications, 2022, 34 : 16655 - 16668
  • [23] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    arXiv, 2023,
  • [24] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2023, : 448 - 458
  • [25] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    35th AAAI Conference on Artificial Intelligence, AAAI 2021, 2021, 17A : 15008 - 15015
  • [26] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 448 - 458
  • [27] Spatial-temporal dynamic semantic graph neural network
    Zhang, Rui
    Xie, Fei
    Sun, Rui
    Huang, Lei
    Liu, Xixiang
    Shi, Jianjun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19): : 16655 - 16668
  • [28] Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting
    Lakma, Dimuthu
    Perera, Kushani
    Borovica-Gajic, Renata
    Karunasekera, Shanika
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 68 - 80
  • [29] Traffic forecasting with graph spatial-temporal position recurrent network
    Chen, Yibi
    Li, Kenli
    Yeo, Chai Kiat
    Li, Keqin
    NEURAL NETWORKS, 2023, 162 : 340 - 349
  • [30] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15008 - 15015