Deep Learning-based Assessment of Internal Carotid Artery Anatomy to Predict Difficult Intracranial Access in Endovascular Recanalization of Acute Ischemic Stroke

被引:8
作者
Nageler, Gregor [1 ,2 ]
Gergel, Ingmar [2 ]
Fangerau, Markus [2 ]
Breckwoldt, Michael [1 ]
Seker, Fatih [1 ]
Bendszus, Martin [1 ]
Moehlenbruch, Markus [1 ]
Neuberger, Ulf [1 ]
机构
[1] Heidelberg Univ Hosp, Dept Neuroradiol, Neuenheimer Feld 400, D-69120 Heidelberg, Germany
[2] Mbits Imaging GmbH, Heidelberg, Germany
关键词
Machine learning; Mechanical thrombectomy; Tortuosity; nnUNet; Convolutional neural network (CNN);
D O I
10.1007/s00062-023-01276-0
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundEndovascular thrombectomy (EVT) duration is an important predictor for neurological outcome. Recently it was shown that an angle of <= 90 degrees of the internal carotid artery (ICA) is predictive for longer EVT duration. As manual angle measurement is not trivial and time-consuming, deep learning (DL) could help identifying difficult EVT cases in advance.MethodsWe included 379 CT angiographies (CTA) of patients who underwent EVT between January 2016 and December 2020. Manual segmentation of 121 CTAs was performed for the aortic arch, common carotid artery (CCA) and ICA. These were used to train a nnUNet. The remaining 258 CTAs were segmented using the trained nnUNet with manual verification afterwards. Angles of left and right ICAs were measured resulting in two classes: acute angle <= 90 degrees and > 90 degrees. The segmentations together with angle measurements were used to train a convolutional neural network (CNN) determining the ICA angle. The performance was evaluated using Dice scores. The classification was evaluated using AUC and accuracy. Associations of ICA angle and procedural times was explored using median and Whitney-U test.ResultsMedian EVT duration for cases with ICA angle > 90 degrees was 48 min and with <= 90 degrees was 64 min (p = 0.001). Segmentation evaluation showed Dice scores of 0.94 for the aorta and 0.86 for CCA/ICA, respectively. Evaluation of ICA angle determination resulted in an AUC of 0.92 and accuracy of 0.85. ConclusionThe association between ICA angle and EVT duration could be verified and a DL-based method for semi-automatic assessment with the potential for full automation was developed. More anatomical features of interest could be examined in a similar fashion.
引用
收藏
页码:783 / 792
页数:10
相关论文
共 32 条
[1]   Stent-Based Retrieval Techniques in Acute Ischemic Stroke Patients with and Without Susceptibility Vessel Sign [J].
Belachew, Nebiyat F. ;
Piechowiak, Eike I. ;
Dobrocky, Tomas ;
Meinel, Thomas R. ;
Hakim, Arsany ;
Barvulsky, Enrique A. ;
Vynckier, Jan ;
Arnold, Marcel ;
Seiffge, David J. ;
Wiest, Roland ;
Fischer, Urs ;
Gralla, Jan ;
Kaesmacher, Johannes ;
Mordasini, Pasquale .
CLINICAL NEURORADIOLOGY, 2022, 32 (02) :407-418
[2]   Cervical internal carotid artery tortuosity: A morphologic analysis of patients with acute ischemic stroke [J].
Benson, John C. ;
Brinjikji, Waleed ;
Messina, Steven A. ;
Lanzino, Giuseppe ;
Kallmes, David F. .
INTERVENTIONAL NEURORADIOLOGY, 2020, 26 (02) :216-221
[3]   Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning [J].
Brugnara, Gianluca ;
Neuberger, Ulf ;
Mahmutoglu, Mustafa A. ;
Foltyn, Martha ;
Herweh, Christian ;
Nagel, Simon ;
Schonenberger, Silvia ;
Heiland, Sabine ;
Ulfert, Christian ;
Ringleb, Peter Arthur ;
Bendszus, Martin ;
Mohlenbruch, Markus A. ;
Pfaff, Johannes A. R. ;
Vollmuth, Philipp .
STROKE, 2020, 51 (12) :3541-3551
[4]   Federated learning for predicting clinical outcomes in patients with COVID-19 [J].
Dayan, Ittai ;
Roth, Holger R. ;
Zhong, Aoxiao ;
Harouni, Ahmed ;
Gentili, Amilcare ;
Abidin, Anas Z. ;
Liu, Andrew ;
Costa, Anthony Beardsworth ;
Wood, Bradford J. ;
Tsai, Chien-Sung ;
Wang, Chih-Hung ;
Hsu, Chun-Nan ;
Lee, C. K. ;
Ruan, Peiying ;
Xu, Daguang ;
Wu, Dufan ;
Huang, Eddie ;
Kitamura, Felipe Campos ;
Lacey, Griffin ;
de Antonio Corradi, Gustavo Cesar ;
Nino, Gustavo ;
Shin, Hao-Hsin ;
Obinata, Hirofumi ;
Ren, Hui ;
Crane, Jason C. ;
Tetreault, Jesse ;
Guan, Jiahui ;
Garrett, John W. ;
Kaggie, Joshua D. ;
Park, Jung Gil ;
Dreyer, Keith ;
Juluru, Krishna ;
Kersten, Kristopher ;
Rockenbach, Marcio Aloisio Bezerra Cavalcanti ;
Linguraru, Marius George ;
Haider, Masoom A. ;
AbdelMaseeh, Meena ;
Rieke, Nicola ;
Damasceno, Pablo F. ;
Silva, Pedro Mario Cruz E. ;
Wang, Pochuan ;
Xu, Sheng ;
Kawano, Shuichi ;
Sriswasdi, Sira ;
Park, Soo Young ;
Grist, Thomas M. ;
Buch, Varun ;
Jantarabenjakul, Watsamon ;
Wang, Weichung ;
Tak, Won Young .
NATURE MEDICINE, 2021, 27 (10) :1735-+
[5]  
Dumont Travis M, 2018, J Vasc Interv Neurol, V10, P11
[6]   3D CNN-based Identification of Hyperdensities in Cranial Non-contrast CT After Thrombectomy [J].
Ertl, Alexandra ;
Franz, Alfred ;
Schmitz, Bernd ;
Braun, Michael .
BILDVERARBEITUNG FUR DIE MEDIZIN 2022, 2022, :309-314
[7]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[8]   Automated Detection of Ischemic Stroke and Subsequent Patient Triage in Routinely Acquired Head CT [J].
Finck, Tom ;
Schinz, David ;
Grundl, Lioba ;
Eisawy, Rami ;
Yigitsoy, Mehmet ;
Moosbauer, Julia ;
Zimmer, Claus ;
Pfister, Franz ;
Wiestler, Benedikt .
CLINICAL NEURORADIOLOGY, 2022, 32 (02) :419-426
[9]   More Retrieval Attempts are Associated with Poorer Functional Outcome After Unsuccessful Thrombectomy [J].
Flottmann, F. ;
van Horn, N. ;
Maros, M. E. ;
Leischner, H. ;
Bechstein, M. ;
Meyer, L. ;
Sauer, M. ;
Deb-Chatterji, M. ;
Alegiani, A. ;
Thomalla, G. ;
Fiehler, J. ;
Brekenfeld, C. .
CLINICAL NEURORADIOLOGY, 2022, 32 (02) :361-368
[10]   Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network [J].
Fu, Fan ;
Wei, Jianyong ;
Zhang, Miao ;
Yu, Fan ;
Xiao, Yueting ;
Rong, Dongdong ;
Shan, Yi ;
Li, Yan ;
Zhao, Cheng ;
Liao, Fangzhou ;
Yang, Zhenghan ;
Li, Yuehua ;
Chen, Yingmin ;
Wang, Ximing ;
Lu, Jie .
NATURE COMMUNICATIONS, 2020, 11 (01)