Identification of tumor mutation burden-associated molecular and clinical features in cancer by analyzing multi-omics data

被引:26
作者
Li, Mengyuan [1 ,2 ]
Gao, Xuejiao [1 ,2 ]
Wang, Xiaosheng [3 ]
机构
[1] Nanjing Univ Chinese Med, Sch Pharm, Nanjing, Peoples R China
[2] Nanjing Univ Chinese Med, Affiliated Hosp Integrated Tradit Chinese & Wester, Nanjing, Jiangsu, Peoples R China
[3] China Pharmaceut Univ, Sch Basic Med & Clin Pharm, Nanjing, Peoples R China
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
关键词
tumor mutation burden; multi-omics; antitumor immunity; cancer immunotherapy; TMB prognostic score; ceRNA; CTLA-4; BLOCKADE; PD-L1; BREAST-CANCER; NIVOLUMAB; PATHWAYS; IMMUNOTHERAPY; EXPRESSION; DOCETAXEL; GENOMES; PROTEIN;
D O I
10.3389/fimmu.2023.1090838
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundTumor mutation burden (TMB) has been recognized as a predictive biomarker for immunotherapy response in cancer. Systematic identification of molecular features correlated with TMB is significant, although such investigation remains insufficient. MethodsWe analyzed associations of somatic mutations, pathways, protein expression, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), competing endogenous RNA (ceRNA) antitumor immune signatures, and clinical features with TMB in various cancers using multi-omics datasets from The Cancer Genome Atlas (TCGA) program and datasets for cancer cohorts receiving the immune checkpoint blockade therapy. ResultsAmong the 32 TCGA cancer types, melanoma harbored the highest percentage of high-TMB (>= 10/Mb) cancers (49.4%), followed by lung adenocarcinoma (36.9%) and lung squamous cell carcinoma (28.1%). Three hundred seventy-six genes had significant correlations of their mutations with increased TMB in various cancers, including 11 genes (ARID1A, ARID1B, BRIP1, NOTCH2, NOTCH4, EPHA5, ROS1, FAT1, SPEN, NSD1,and PTPRT) with the characteristic of their mutations associated with a favorable response to immunotherapy. Based on the mutation profiles in three genes (ROS1, SPEN, and PTPRT), we defined the TMB prognostic score that could predict cancer survival prognosis in the immunotherapy setting but not in the non-immunotherapy setting. It suggests that the TMB prognostic score's ability to predict cancer prognosis is associated with the positive correlation between immunotherapy response and TMB. Nine cancer-associated pathways correlated positively with TMB in various cancers, including nucleotide excision repair, DNA replication, homologous recombination, base excision repair, mismatch repair, cell cycle, spliceosome, proteasome, and RNA degradation. In contrast, seven pathways correlated inversely with TMB in multiple cancers, including Wnt, Hedgehog, PI3K-AKT, MAPK, neurotrophin, axon guidance, and pathways in cancer. High-TMB cancers displayed higher levels of antitumor immune signatures and PD-L1 expression than low-TMB cancers in diverse cancers. The association between TMB and survival prognosis was positive in bladder, gastric, and endometrial cancers and negative in liver and head and neck cancers. TMB also showed significant associations with age, gender, height, weight, smoking, and race in certain cohorts. ConclusionsThe molecular and clinical features significantly associated with TMB could be valuable predictors for TMB and immunotherapy response and therefore have potential clinical values for cancer management.
引用
收藏
页数:13
相关论文
共 55 条
[1]   The evolving use of pembrolizumab in combination treatment approaches for non-small cell lung cancer [J].
Alexander, Mariam ;
Ko, Brian ;
Lambert, Remy ;
Gadgeel, Shirish ;
Halmos, Balazs .
EXPERT REVIEW OF RESPIRATORY MEDICINE, 2020, 14 (02) :137-147
[2]   Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes [J].
Biankin, Andrew V. ;
Waddell, Nicola ;
Kassahn, Karin S. ;
Gingras, Marie-Claude ;
Muthuswamy, Lakshmi B. ;
Johns, Amber L. ;
Miller, David K. ;
Wilson, Peter J. ;
Patch, Ann-Marie ;
Wu, Jianmin ;
Chang, David K. ;
Cowley, Mark J. ;
Gardiner, Brooke B. ;
Song, Sarah ;
Harliwong, Ivon ;
Idrisoglu, Senel ;
Nourse, Craig ;
Nourbakhsh, Ehsan ;
Manning, Suzanne ;
Wani, Shivangi ;
Gongora, Milena ;
Pajic, Marina ;
Scarlett, Christopher J. ;
Gill, Anthony J. ;
Pinho, Andreia V. ;
Rooman, Ilse ;
Anderson, Matthew ;
Holmes, Oliver ;
Leonard, Conrad ;
Taylor, Darrin ;
Wood, Scott ;
Xu, Qinying ;
Nones, Katia ;
Fink, J. Lynn ;
Christ, Angelika ;
Bruxner, Tim ;
Cloonan, Nicole ;
Kolle, Gabriel ;
Newell, Felicity ;
Pinese, Mark ;
Mead, R. Scott ;
Humphris, Jeremy L. ;
Kaplan, Warren ;
Jones, Marc D. ;
Colvin, Emily K. ;
Nagrial, Adnan M. ;
Humphrey, Emily S. ;
Chou, Angela ;
Chin, Venessa T. ;
Chantrill, Lorraine A. .
NATURE, 2012, 491 (7424) :399-405
[3]   ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks [J].
Bindea, Gabriela ;
Mlecnik, Bernhard ;
Hackl, Hubert ;
Charoentong, Pornpimol ;
Tosolini, Marie ;
Kirilovsky, Amos ;
Fridman, Wolf-Herman ;
Pages, Franck ;
Trajanoski, Zlatko ;
Galon, Jerome .
BIOINFORMATICS, 2009, 25 (08) :1091-1093
[4]   Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer [J].
Borghaei, H. ;
Paz-Ares, L. ;
Horn, L. ;
Spigel, D. R. ;
Steins, M. ;
Ready, N. E. ;
Chow, L. Q. ;
Vokes, E. E. ;
Felip, E. ;
Holgado, E. ;
Barlesi, F. ;
Kohlhaeufl, M. ;
Arrieta, O. ;
Burgio, M. A. ;
Fayette, J. ;
Lena, H. ;
Poddubskaya, E. ;
Gerber, D. E. ;
Gettinger, S. N. ;
Rudin, C. M. ;
Rizvi, N. ;
Crino, L. ;
Blumenschein, G. R. ;
Antonia, S. J. ;
Dorange, C. ;
Harbison, C. T. ;
Finckenstein, F. Graf ;
Brahmer, J. R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (17) :1627-1639
[5]   Genomic Approaches to Understanding Response and Resistance to Immunotherapy [J].
Braun, David A. ;
Burke, Kelly P. ;
Van Allen, Eliezer M. .
CLINICAL CANCER RESEARCH, 2016, 22 (23) :5642-5650
[6]   Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden [J].
Chalmers, Zachary R. ;
Connelly, Caitlin F. ;
Fabrizio, David ;
Gay, Laurie ;
Ali, Siraj M. ;
Ennis, Riley ;
Schrock, Alexa ;
Campbell, Brittany ;
Shlien, Adam ;
Chmielecki, Juliann ;
Huang, Franklin ;
He, Yuting ;
Sun, James ;
Tabori, Uri ;
Kennedy, Mark ;
Lieber, Daniel S. ;
Roels, Steven ;
White, Jared ;
Otto, Geoffrey A. ;
Ross, Jeffrey S. ;
Garraway, Levi ;
Miller, Vincent A. ;
Stephens, Phillip J. ;
Frampton, Garrett M. .
GENOME MEDICINE, 2017, 9
[7]   CDK4/6 inhibition triggers anti-tumour immunity [J].
Goel, Shom ;
DeCristo, Molly J. ;
Watt, April C. ;
BrinJones, Haley ;
Sceneay, Jaclyn ;
Li, Ben B. ;
Khan, Naveed ;
Ubellacker, Jessalyn M. ;
Xie, Shaozhen ;
Metzger-Filho, Otto ;
Hoog, Jeremy ;
Ellis, Matthew J. ;
Ma, Cynthia X. ;
Ramm, Susanne ;
Krop, Ian E. ;
Winer, Eric P. ;
Roberts, Thomas M. ;
Kim, Hye-Jung ;
McAllister, Sandra S. ;
Zhao, Jean J. .
NATURE, 2017, 548 (7668) :471-+
[8]   Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers [J].
Goodman, Aaron M. ;
Kato, Shumei ;
Bazhenova, Lyudmila ;
Patel, Sandip P. ;
Frampton, Garrett M. ;
Miller, Vincent ;
Stephens, Philip J. ;
Daniels, Gregory A. ;
Kurzrock, Razelle .
MOLECULAR CANCER THERAPEUTICS, 2017, 16 (11) :2598-2608
[9]   Targeting neurotrophin signaling in cancer: The renaissance [J].
Griffin, Nathan ;
Faulkner, Sam ;
Jobling, Phillip ;
Hondermarck, Hubert .
PHARMACOLOGICAL RESEARCH, 2018, 135 :12-17
[10]   GSVA: gene set variation analysis for microarray and RNA-Seq data [J].
Haenzelmann, Sonja ;
Castelo, Robert ;
Guinney, Justin .
BMC BIOINFORMATICS, 2013, 14