A realizable second-order advection method with variable flux limiters for moment transport equations

被引:0
作者
Choi, Byeongyeob [1 ]
Baek, Jehyun [1 ]
You, Donghyun [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Mech Engn, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Population balance equation (PBE); Quadrature-based moment methods; Moment transport equation; Moment realizability; Total variation diminishing (TVD); Finite volume method; POPULATION BALANCE-EQUATIONS; FINITE-VOLUME SCHEMES; QUADRATURE METHOD; STABILITY;
D O I
10.1016/j.jcp.2022.111767
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A second-order total variation diminishing (TVD) method with variable flux limiters is proposed to overcome the non-realizability issue, which has been one of major obstacles in applying the conventional second-order TVD schemes to the moment transport equations. In the present method, a realizable moment set at a cell face is reconstructed by allowing the flexible selection of the flux limiter values within the second-order TVD region. Necessary conditions for the variable flux limiter scheme to simultaneously satisfy the realizability and the second-order TVD property for the third-order moment set are proposed. The strategy for satisfying the second-order TVD property is conditionally extended to the fourth-and fifth-order moments. The proposed method is verified and compared with other high-order realizable schemes in one-and two-dimensional configurations, and is found to preserve the realizability of moments while satisfying the high-order TVD property for the third-order moment set and conditionally for the fourth- and fifth-order moments. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 27 条
[21]   Results of the International Wet Steam Modeling Project [J].
Starzmann, Joerg ;
Hughes, Fiona R. ;
Schuster, Sebastian ;
White, Alexander J. ;
Halama, Jan ;
Hric, Vladimir ;
Kolovratnik, Michal ;
Lee, Hoon ;
Sova, Libor ;
St'astny, Miroslav ;
Gruebel, Marius ;
Schatz, Markus ;
Vogt, Damian M. ;
Patel, Yogini ;
Patel, Giteshkumar ;
Turunen-Saaresti, Teemu ;
Gribin, Vladimir ;
Tishchenko, Victor ;
Gavrilov, Ilya ;
Kim, Changhyun ;
Baek, Jehyun ;
Wu, Xiaoming ;
Yang, Jiandao ;
Dykas, Slawomir ;
Wroblewski, Wlodzimierz ;
Yamamoto, Satoru ;
Feng, Zhenping ;
Li, Liang .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2018, 232 (05) :550-570
[23]   Realizable high-order finite-volume schemes for quadrature-based moment methods [J].
Vikas, V. ;
Wang, Z. J. ;
Passalacqua, A. ;
Fox, R. O. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (13) :5328-5352
[24]   QMOM-based population balance model involving a fractal dimension for the flocculation of latex particles [J].
Vlieghe, Melody ;
Coufort-Saudejaud, Carole ;
Line, Alain ;
Frances, Christine .
CHEMICAL ENGINEERING SCIENCE, 2016, 155 :65-82
[25]  
Wheeler J. C., 1974, Rocky Mt. J. Math., V4, P287, DOI DOI 10.1216/RMJ-1974-4-2-287
[26]   Numerical advection of moments of the particle size distribution in Eulerian models [J].
Wright, Douglas L., Jr. .
JOURNAL OF AEROSOL SCIENCE, 2007, 38 (03) :352-369
[27]   An extended quadrature method of moments for population balance equations [J].
Yuan, C. ;
Laurent, F. ;
Fox, R. O. .
JOURNAL OF AEROSOL SCIENCE, 2012, 51 :1-23