Weighted Variable Hardy Spaces Associated with Para-Accretive Functions and Boundedness of Calderon-Zygmund Operators

被引:5
作者
Tan, Jian [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Weighted Hardy space; Variable exponent analysis; Atomic decomposition; Para-accretive function; Boundedness; Extrapolation; TRIEBEL-LIZORKIN TYPE; ATOMIC DECOMPOSITIONS; INEQUALITIES; EXPONENTS; LEBESGUE;
D O I
10.1007/s12220-022-01121-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is threefold. The first is to present a new atomic decomposition of weighted Hardy spaces H-b,w(p)(Rn) associated with para-accretive functions, where w is a Muckenhoupt's weight, b is a para-accretive function and p < infinity. The second purpose is to show the boundedness of Calderon-Zygmund operators on these spaces for p < infinity. The last purpose is to introduce a new weighted variable Hardy space H (p(center dot))(b,w) (Rn) by using the Littlewood-Paley g functions and weighted variable Plancherel-Polya-type inequalities associated with a para-accretive function, where w is a variable exponent weight. Moreover, we also prove the boundedness for Calderon-Zygmund operators on H (p(center dot))(b,w) (R-n) via extrapolation.
引用
收藏
页数:32
相关论文
共 44 条
[21]   A Theory of Besov and Triebel-Lizorkin Spaces on Metric Measure Spaces Modeled on Carnot-Caratheodory Spaces [J].
Han, Yongsheng ;
Mueller, Detlef ;
Yang, Dachun .
ABSTRACT AND APPLIED ANALYSIS, 2008,
[22]   Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces [J].
Han, YS ;
Yang, DC .
STUDIA MATHEMATICA, 2003, 156 (01) :67-97
[23]   Sublinear operators on weighted Hardy spaces with variable exponents [J].
Ho, Kwok-Pun .
FORUM MATHEMATICUM, 2019, 31 (03) :607-617
[24]  
Ho KP, 2017, TOHOKU MATH J, V69, P383
[25]  
Ho KP, 2016, REV UNION MAT ARGENT, V57, P85
[26]   WEIGHTED HARDY SPACES ASSOCIATED TO PARA-ACCRETIVE FUNCTIONS [J].
Lan, Sen-Hua ;
Lin, Chin-Cheng .
TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (3B) :1055-1078
[27]  
MCINTOSH A, 1985, CR ACAD SCI I-MATH, V301, P395
[28]  
Meyer Y., 1997, WAVELETS CALDERON ZY
[29]   Hardy spaces with variable exponents and generalized Campanato spaces [J].
Nakai, Eiichi ;
Sawano, Yoshihiro .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) :3665-3748
[30]  
Pick L., 2001, Expo. Math, V19, P369