Weighted Variable Hardy Spaces Associated with Para-Accretive Functions and Boundedness of Calderon-Zygmund Operators

被引:5
作者
Tan, Jian [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Weighted Hardy space; Variable exponent analysis; Atomic decomposition; Para-accretive function; Boundedness; Extrapolation; TRIEBEL-LIZORKIN TYPE; ATOMIC DECOMPOSITIONS; INEQUALITIES; EXPONENTS; LEBESGUE;
D O I
10.1007/s12220-022-01121-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is threefold. The first is to present a new atomic decomposition of weighted Hardy spaces H-b,w(p)(Rn) associated with para-accretive functions, where w is a Muckenhoupt's weight, b is a para-accretive function and p < infinity. The second purpose is to show the boundedness of Calderon-Zygmund operators on these spaces for p < infinity. The last purpose is to introduce a new weighted variable Hardy space H (p(center dot))(b,w) (Rn) by using the Littlewood-Paley g functions and weighted variable Plancherel-Polya-type inequalities associated with a para-accretive function, where w is a variable exponent weight. Moreover, we also prove the boundedness for Calderon-Zygmund operators on H (p(center dot))(b,w) (R-n) via extrapolation.
引用
收藏
页数:32
相关论文
共 44 条
[1]  
ANDERSEN KF, 1980, STUD MATH, V69, P19
[2]  
[Anonymous], 2009, Lecture Notes in Mathematics
[3]   ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS [J].
CALDERON, AP ;
ZYGMUND, A .
ACTA MATHEMATICA, 1952, 88 (03) :85-139
[4]  
Chen W.-G, 2008, ACTA MATH SIN, V51, P487
[5]   A note on the boundedness of Calderoln-Zygmund operators on Hardy spaces [J].
Chen, WG ;
Han, YS ;
Miao, CX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 310 (01) :57-67
[6]   A NEW APPROACH TO NORM INEQUALITIES ON WEIGHTED AND VARIABLE HARDY SPACES [J].
Cruz-Uribe, David ;
Moen, Kabe ;
Hanh Van Nguyen .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 :175-198
[7]  
Cruz-Uribe D, 2019, HOUSTON J MATH, V45, P853
[8]   THE BOUNDEDNESS OF MULTILINEAR CALDERON-ZYGMUND OPERATORS ON WEIGHTED AND VARIABLE HARDY SPACES [J].
Cruz-Uribe, David ;
Moen, Kabe ;
Hanh Van Nguyen .
PUBLICACIONS MATEMATIQUES, 2019, 63 (02) :679-713
[9]   EXTRAPOLATION AND WEIGHTED NORM INEQUALITIES IN THE VARIABLE LEBESGUE SPACES [J].
Cruz-Uribe, David ;
Wang, Li-An Daniel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (02) :1205-1235
[10]   Variable Hardy Spaces [J].
Cruz-Uribe, David ;
Wang, Li-An Daniel .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (02) :447-493