A Comparison Study of Kinematic and Dynamic Models for Trajectory Tracking of Autonomous Vehicles Using Model Predictive Control

被引:11
|
作者
Ye, Bao-Lin [1 ,2 ]
Niu, Shaofeng [2 ,3 ]
Li, Lingxi [4 ]
Wu, Weimin [5 ]
机构
[1] Jiaxing Univ, Sch Informat Sci & Engn, Jiaxing 314001, Zhejiang, Peoples R China
[2] Zhejiang Sci Tech Univ, Hangzhou 310018, Zhejiang, Peoples R China
[3] Zhejiang Sci Tech Univ, Sch Comp Sci & Technol, Xiasha Campus, Hangzhou 310018, Zhejiang, Peoples R China
[4] Indiana Univ Purdue Univ Indianapolis, Purdue Sch Engn & Technol, Dept Elect & Comp Engn, Indianapolis, IN 46202 USA
[5] Zhejiang Univ, Inst Cyber Syst & Control, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous vehicle; kinematic and dynamic models; model predictive control; trajectory tracking; SIDESLIP ANGLE; PATH TRACKING; AVOIDANCE; DESIGN; MPC;
D O I
10.1007/s12555-022-0337-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Efficient trajectory tracking approaches can enable autonomous vehicles not only to get a smooth trajectory but to achieve a lower energy dissipation. Since vehicle model plays an important role in trajectory tracking, this paper investigates and compares the performance of two classical vehicle models for trajectory tracking of autonomous vehicles using model predictive control (MPC). Firstly, a two-degree-of-freedom kinematic model and a three-degree-of-freedom yaw dynamic model are established for autonomous vehicles. Meanwhile, in order to carry out tracking control more effectively and smoothly, the tire slip angle has been taken into account by the dynamic model. Then, we design two MPC controllers for trajectory tracking, which are based on the kinematic model and the dynamic model, respectively. The performances of two MPC controllers are evaluated and compared on the Carsim/Matlab joint simulation platform. Experimental results demonstrated that, under low-speed working conditions, both two MPC controllers can follow the reference trajectory with high accuracy and stability. However, under high-speed working conditions, the tracking error of the kinematic model is too large to be used in the real trajectory tracking problem. On the contrary, the controller based on the dynamic model still performs a good tracking effect. In addition, this study offers guidance on how to select a suitable vehicle model for autonomous vehicles under different speed working conditions.
引用
收藏
页码:3006 / 3021
页数:16
相关论文
共 50 条
  • [31] QPSO-model predictive control-based approach to dynamic trajectory tracking control for unmanned underwater vehicles
    Gan, Wenyang
    Zhu, Daqi
    Ji, Daxiong
    OCEAN ENGINEERING, 2018, 158 : 208 - 220
  • [32] Trajectory Tracking Control of Autonomous Ground Vehicles Using Adaptive Learning MPC
    Zhang, Kunwu
    Sun, Qi
    Shi, Yang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (12) : 5554 - 5564
  • [33] Robust Trajectory Tracking Error Model-Based Predictive Control for Unmanned Ground Vehicles
    Kayacan, Erkan
    Ramon, Herman
    Saeys, Wouter
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2016, 21 (02) : 806 - 814
  • [34] Research on Trajectory Tracking of Unmanned Tracked Vehicles Based on Model Predictive Control
    Hu J.
    Hu Y.
    Chen H.
    Liu K.
    Binggong Xuebao/Acta Armamentarii, 2019, 40 (03): : 456 - 463
  • [35] Nonlinear Model Predictive Control of a Class of Continuum Robots Using Kinematic and Dynamic Models
    Amouri, Ammar
    Cherfia, Abdelhakim
    Merabti, Halim
    Leksir, Yazid Laib Dit
    FME TRANSACTIONS, 2022, 50 (02): : 339 - 350
  • [36] MODEL PREDICTIVE CONTROL STRATEGY FOR SMOOTH PATH TRACKING OF AUTONOMOUS VEHICLES WITH STEERING ACTUATOR DYNAMICS
    Kim, E.
    Kim, J.
    Sunwoo, M.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2014, 15 (07) : 1155 - 1164
  • [37] Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics
    E. Kim
    J. Kim
    M. Sunwoo
    International Journal of Automotive Technology, 2014, 15 : 1155 - 1164
  • [38] Dynamic Trajectory Planning and Tracking for Autonomous Vehicle With Obstacle Avoidance Based on Model Predictive Control
    Li, Shaosong
    Li, Zheng
    Yu, Zhixin
    Zhang, Bangcheng
    Zhang, Niaona
    IEEE ACCESS, 2019, 7 : 132074 - 132086
  • [39] Robust Multiple Model Predictive Control for Ascent Trajectory Tracking of Aerospace Vehicles
    Cao, Rui
    Liu, Yanbin
    Lu, Yuping
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (02) : 1333 - 1351
  • [40] Research on Model Predictive Control-based Trajectory Tracking for Unmanned Vehicles
    Yuan, Shoutong
    Zhao, Pengchao
    Zhang, Qingyu
    Hu, Xin
    2019 4TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS ENGINEERING (ICCRE), 2019, : 79 - 86