Boundedness of the p-primary torsion of the Brauer group of an abelian variety

被引:2
作者
D'Addezio, Marco [1 ]
机构
[1] Inst Math Jussieu Paris Rive Gauche, Paris, France
关键词
Brauer group; abelian variety; fppf cohomology; Tate conjecture; CRYSTALS;
D O I
10.1112/S0010437X23007558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the p(infinity)-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic p > 0 is bounded. This answers a (variant of a) question asked by Skorobogatov and Zarhin for abelian varieties. To do this, we prove a 'flat Tate conjecture' for divisors. We also study other geometric Galois-invariant p(infinity)-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely p -divisible. We explain how the existence of these p -divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of N & eacute;ron-Severi groups in characteristic p.
引用
收藏
页码:463 / 480
页数:19
相关论文
共 30 条
[1]   SPECIALIZATION OF NERON-SEVERI GROUPS IN POSITIVE CHARACTERISTIC [J].
Ambrosi, Emiliano .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (03) :665-+
[2]   Maximal tori of monodromy groups of F-iso crystals and an application to abelian varieties [J].
Ambrosi, Emiliano ;
D'Addezio, Marco .
ALGEBRAIC GEOMETRY, 2022, 9 (05) :633-650
[3]  
Andre Yves., 1996, Inst. Hautes Etudes Sci. Publ. Math, P5
[4]  
[Anonymous], 2023, The stacks project
[5]  
ARTIN M, 1977, ANN SCI ECOLE NORM S, V10, P87
[6]  
BERTHELOT P, 1982, LECT NOTES MATH, V930, pR3
[7]  
Berthelot Pierre., 1974, LECT NOTES MATH, V407
[8]  
Bhatt B, 2015, ASTERISQUE, P99
[9]  
Bragg D, 2025, Arxiv, DOI arXiv:2107.11492
[10]   On the generic part of the cohomology of compact unitary Shimura varieties [J].
Caraiani, Ana ;
Scholze, Peter .
ANNALS OF MATHEMATICS, 2017, 186 (03) :649-766