This work aims to provide a reliable and intelligent prediction model for future trends in sharing economy. Moreover, it presents valuable insights for decision-making and policy development by relevant governmental bodies. Furthermore, the study introduces a predictive system that incorporates an enhanced Harris Hawk Optimization (HHO) algorithm and a K-Nearest Neighbor (KNN) forecasting framework. The method utilizes an improved simulated annealing mechanism and a Gaussian bare bone structure to improve the original HHO, termed SGHHO. To achieve optimal prediction performance and identify essential features, a refined simulated annealing mechanism is employed to mitigate the susceptibility of the original HHO algorithm to local optima. The algorithm employs a mechanism that boosts its global search ability by generating fresh solution sets at a specific likelihood. This mechanism dynamically adjusts the equilibrium between the exploration and exploitation phases, incorporating the Gaussian bare bone strategy. The best classification model (SGHHO-KNN) is developed to mine the key features with the improvement of both strategies. To assess the exceptional efficacy of the SGHHO algorithm, this investigation conducted a series of comparative trials employing the function set of IEEE CEC 2014. The outcomes of these experiments unequivocally demonstrate that the SGHHO algorithm outperforms the original HHO algorithm on 96.7% of the functions, substantiating its remarkable superiority. The algorithm can achieve the optimal value of the function on 67% of the tested functions and significantly outperforms other competing algorithms. In addition, the key features selected by the SGHHO-KNN model in the prediction experiment, including " Form of sharing economy in your region " and " Attitudes to the sharing economy ", are important for predicting the future trends of the sharing economy in this study. The results of the prediction demonstrate that the proposed model achieves an accuracy rate of 99.70% and a specificity rate of 99.38%. Consequently, the SGHHO-KNN model holds great potential as a reliable tool for forecasting the forthcoming trajectory of the sharing economy.
机构:
Jozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, SloveniaJozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, Slovenia
Rozanec, Joze M.
Krivec, Tadej
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, SloveniaJozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, Slovenia
Krivec, Tadej
Kersic, Vid
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maribor, Fac Elect Engn & Comp Sci, FERI, Koroska Cesta 46, Maribor 2000, SloveniaJozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, Slovenia
Kersic, Vid
Cundric, Larsen
论文数: 0引用数: 0
h-index: 0
机构:
Longevize BV, Maribor, SloveniaJozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, Slovenia
Cundric, Larsen
Stojanovic, Blaz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana 1000, SloveniaJozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, Slovenia
Stojanovic, Blaz
Zeman, Marko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana 1000, SloveniaJozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, Slovenia
Zeman, Marko
Bratko, Ivan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana 1000, SloveniaJozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, Slovenia
Bratko, Ivan
CENTRAL EUROPEAN CONFERENCE ON INFORMATION AND INTELLIGENT SYSTEMS, CECIIS 2022,
2022,
: 365
-
370
机构:
Tangshan Normal Univ, Expt Management Ctr, Tangshan 063000, Hebei, Peoples R ChinaTangshan Normal Univ, Expt Management Ctr, Tangshan 063000, Hebei, Peoples R China
Yan, Jing
Li, Yinbing
论文数: 0引用数: 0
h-index: 0
机构:
Tangshan Univ, Coll Artificial Intelligence, Tangshan, Hebei, Peoples R ChinaTangshan Normal Univ, Expt Management Ctr, Tangshan 063000, Hebei, Peoples R China
Li, Yinbing
Zheng, Zheng
论文数: 0引用数: 0
h-index: 0
机构:
Tangshan Normal Univ, Dept Comp Sci, Tangshan, Hebei, Peoples R ChinaTangshan Normal Univ, Expt Management Ctr, Tangshan 063000, Hebei, Peoples R China
机构:
Univ Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Chem Engn, Sungai Long Campus,Jalan Sungai Long, Kajang 43000, Selangor, MalaysiaUniv Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Chem Engn, Sungai Long Campus,Jalan Sungai Long, Kajang 43000, Selangor, Malaysia
Lai, Yen Yi
Yik, Kelvin Chu How
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Chem Engn, Sungai Long Campus,Jalan Sungai Long, Kajang 43000, Selangor, MalaysiaUniv Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Chem Engn, Sungai Long Campus,Jalan Sungai Long, Kajang 43000, Selangor, Malaysia
Yik, Kelvin Chu How
Hau, Han Peng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Chem Engn, Sungai Long Campus,Jalan Sungai Long, Kajang 43000, Selangor, MalaysiaUniv Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Chem Engn, Sungai Long Campus,Jalan Sungai Long, Kajang 43000, Selangor, Malaysia
Hau, Han Peng
Chow, Chai Peng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Chem Engn, Sungai Long Campus,Jalan Sungai Long, Kajang 43000, Selangor, MalaysiaUniv Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Chem Engn, Sungai Long Campus,Jalan Sungai Long, Kajang 43000, Selangor, Malaysia
Chow, Chai Peng
Chemmangattuvalappil, Nishanth G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nottingham Malaysia Campus, Ctr Sustainable Palm Oil Res, Dept Chem & Environm Engn, Broga Rd, Semenyih 43500, Selangor, MalaysiaUniv Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Chem Engn, Sungai Long Campus,Jalan Sungai Long, Kajang 43000, Selangor, Malaysia
Chemmangattuvalappil, Nishanth G.
Ng, Lik Yin
论文数: 0引用数: 0
h-index: 0
机构:
Heriot Watt Univ Malaysia, Sch Engn & Phys Sci, Putrajaya 62200, Wilayah Perseku, MalaysiaUniv Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Chem Engn, Sungai Long Campus,Jalan Sungai Long, Kajang 43000, Selangor, Malaysia