Sisal-Fiber-Reinforced Polypropylene Flame-Retardant Composites: Preparation and Properties

被引:10
|
作者
Wang, Zhenhua [1 ]
Feng, Weili [1 ]
Ban, Jiachen [2 ]
Yang, Zheng [1 ]
Fang, Xiaomin [1 ]
Ding, Tao [1 ]
Liu, Baoying [1 ]
Zhao, Junwei [1 ]
机构
[1] Henan Univ, Coll Chem & Chem Engn, Kaifeng 475004, Peoples R China
[2] Henan Univ, Inst Sci & Technol, Minsheng Coll, Kaifeng 475004, Peoples R China
关键词
polypropylene; sisal fiber; flame retardant; preparation; mechanical properties; MECHANICAL-PROPERTIES; THERMAL-STABILITY; DOUBLE HYDROXIDE; FLAMMABILITY; POLYPHOSPHATE; BREAKAGE; AMMONIUM; HYBRID; OXIDE;
D O I
10.3390/polym15040893
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Natural-fiber-reinforced polypropylene (PP) composites with a series of advantages including light weight, chemical durability, renewable resources, low in cost, etc., are being widely used in many fields such as the automotive industry, packaging, and construction. However, the flammability of plant fiber and the PP matrix restricts the application range, security, and use of these composites. Therefore, it is of great significance to study the flame retardants of such composites. In this paper, sisal-fiber-reinforced polypropylene (PP/SF) flame-retardant composites were prepared using the two-step melt blending method. The flame retardant used was an intumescent flame retardant (IFR) composed of silane-coated ammonium polyphosphate (Si-APP) and pentaerythritol (PER). The influence of different blending processes on the flammability and mechanical properties of the composites was analyzed. The findings suggested that PP/SF flame-retardant composites prepared via different blending processes showed different flame-retardant properties. The (PP/SF)/IFR composite prepared by PP/SF secondary blending with IFR showed excellent flame-retardant performance, with a limited oxygen index of about 28.3% and passing the UL-94 V-0 rating (3.2 mm) in the vertical combustion test. Compared with the (PP/IFR) /SF composite prepared by a matrix primarily blended with IFR and then secondly blended with SF, the peak heat release rate (pk HRR) and total heat release (THR) of the (PP/SF)/IFR composite decreased by 11.3% and 13.7%, respectively. In contrast, the tensile strength of the (PP/SF)/IFR system was 5.3% lower than that of the (PP/IFR)/SF system; however, the overall mechanical (tensile, flexural, and notched impact) properties of the composites prepared using three different mixing processes were similar.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Preparation, thermal stability and flame-retardant properties of halogen-free polypropylene composites
    Li, Yi-Luen
    Kuan, Chen-Feng
    Hsu, Shu-Wei
    Chen, Chia-Hsun
    Kuan, Hsu-Chiang
    Lee, Fang-Mei
    Yip, Ming-Chuen
    Chiang, Chin-Lung
    HIGH PERFORMANCE POLYMERS, 2012, 24 (06) : 478 - 487
  • [2] Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites
    Joseph, PV
    Joseph, K
    Thomas, S
    COMPOSITES SCIENCE AND TECHNOLOGY, 1999, 59 (11) : 1625 - 1640
  • [3] Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites
    Jeencham, Rachasit
    Suppakarn, Nitinat
    Jarukumjorn, Kasama
    COMPOSITES PART B-ENGINEERING, 2014, 56 : 249 - 253
  • [4] Preparation and characterization of flame-retardant polypropylene/α-titanium phosphate (nano)composites
    Bao, Chenlu
    Song, Lei
    Guo, Yuqiang
    Hu, Yuan
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2011, 22 (07) : 1156 - 1165
  • [5] Intumescent Flame-retardant Modification of Polypropylene/Carbon Fiber Composites
    Gao Shanjun
    Li Yunzhe
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2022, 37 (02): : 163 - 169
  • [6] Tensile properties of polypropylene flame-retardant composites
    Liang, J. Z.
    POLYMER BULLETIN, 2012, 68 (03) : 803 - 813
  • [7] Tensile properties of polypropylene flame-retardant composites
    J. Z. Liang
    Polymer Bulletin, 2012, 68 : 803 - 813
  • [8] Preparation, flame retardancy, and mechanical properties of flame-retardant glass fibre reinforced epoxy composites
    Su, Liping
    Li, Zhinong
    Huang, Zhensheng
    Lai, Kaigong
    Zhang, Huagui
    Liu, Canpei
    Chen, Mingfeng
    Zhang, Xu
    PLASTICS RUBBER AND COMPOSITES, 2020, 49 (10) : 443 - 449
  • [9] Flammability and Mechanical Properties of Sisal Fiber/Polypropylene Composites: Effect of Combination of Flame Retardants
    Jeencham, Rachasit
    Suppakarn, Nitinat
    Jarukumjorn, Kasama
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES III, PTS 1 AND 2, 2010, 123-125 : 85 - 88
  • [10] Effects of Hyperbranched Polyamide on the Properties of Sisal Fiber Reinforced Polypropylene Composites
    Zhao, Xin
    Sun, Zhanying
    Tang, Anxin
    JOURNAL OF NATURAL FIBERS, 2022, 19 (05) : 1690 - 1699