Recognition of sunflower growth period based on deep learning from UAV remote sensing images

被引:8
作者
Song, Zhishuang [1 ,2 ,3 ]
Wang, Pengfei [1 ,2 ,3 ]
Zhang, Zhitao [4 ]
Yang, Shuqin [1 ,2 ,3 ]
Ning, Jifeng [2 ,3 ,5 ]
机构
[1] Northwest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Shaanxi, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Agr Internet Things, Yangling 712100, Shaanxi, Peoples R China
[3] Shaanxi Key Lab Agr Informat Percept & Intelligent, Yangling 712100, Shaanxi, Peoples R China
[4] Northwest A&F Univ, Coll Water Resources & Architectural Engn, Yangling 712100, Shaanxi, Peoples R China
[5] Northwest A&F Univ, Coll Informat Engn, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Sunflower; Growth period recognition; Deep learning; UAV remote sensing image; TIME-SERIES; LEAF-AREA; YIELD; IRRIGATION; WHEAT; L;
D O I
10.1007/s11119-023-09996-6
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Accurate determination of crops growth period plays an important role in field management and agricultural decision-making. The current work mostly extracts the crop normalized difference vegetation index curve from multi-temporal data and identifies the crop phenology based on its trend or special nodes. However, these time-series-based identification methods are difficult to be applied to practically crop monitoring tasks. In this paper, the unmanned aerial vehicle remote sensing platform is used to collect the multi-spectral images of the experimental field and identify the sunflower growth period based on the different population features during its different growth periods. According to the actual field management needs, this study obtains the plot-level sunflower growth period result by analyzing statistically the distribution area of different sunflower periods in a field plot. This study uses the data of 2018 in the study area to build the model and test its performance on the data of 2019. Through comparative experiments, PSPNet can achieve a good balance between accuracy and efficiency in this study. Further, given to time-series relationship between the adjacent growth periods classification, this paper proposes an improved loss function to weight different types of misclassification to optimize model performance. The results show that improved PSPNet with proposed weighted loss function achieves the optimal recognition accuracy of 89.01%, which provides a solution for sunflower growth period recognition based on the single-phase data.
引用
收藏
页码:1417 / 1438
页数:22
相关论文
共 50 条
  • [41] UAV Remote Sensing Inversion of Soil Salinity in Field of Sunflower
    Chen J.
    Yao Z.
    Zhang Z.
    Wei G.
    Wang X.
    Han J.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (07): : 178 - 191
  • [42] A deep learning based hybrid framework for semisupervised classification of hyperspectral remote sensing images
    Monika Sharma
    Mantosh Biswas
    Multimedia Tools and Applications, 2024, 83 : 55447 - 55470
  • [43] Vehicle Detection in High Resolution Satellite Remote Sensing Images Based on Deep Learning
    Tan, Qulin
    Ling, Juan
    Hu, Jun
    Qin, Xiaochun
    Hu, Jiping
    IEEE ACCESS, 2020, 8 : 153394 - 153402
  • [44] Quality Assessment of Remote Sensing Images Based on Deep Learning and Human Visual System
    Di, Liu
    Li Yingchun
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (06)
  • [45] Deep Learning-Based Cloud Detection for Optical Remote Sensing Images: A Survey
    Wang, Zhengxin
    Zhao, Longlong
    Meng, Jintao
    Han, Yu
    Li, Xiaoli
    Jiang, Ruixia
    Chen, Jinsong
    Li, Hongzhong
    REMOTE SENSING, 2024, 16 (23)
  • [46] A deep learning based hybrid framework for semisupervised classification of hyperspectral remote sensing images
    Sharma, Monika
    Biswas, Mantosh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55447 - 55470
  • [47] Deep Learning-Based Object Detection Techniques for Remote Sensing Images: A Survey
    Li, Zheng
    Wang, Yongcheng
    Zhang, Ning
    Zhang, Yuxi
    Zhao, Zhikang
    Xu, Dongdong
    Ben, Guangli
    Gao, Yunxiao
    REMOTE SENSING, 2022, 14 (10)
  • [48] Deep Learning-Based Methods for Lithology Classification and Identification in Remote Sensing Images
    Zhang, Zhijun
    Wang, Ming
    Qi, Yueji
    Su, Xiaoqin
    Kong, Di
    IEEE ACCESS, 2025, 13 : 3038 - 3050
  • [49] RQCSNet: A deep learning approach to quantized compressed sensing of remote sensing images
    Mirrashid, Alireza
    Shirazi, Ali-Asghar Beheshti
    EXPERT SYSTEMS, 2021, 38 (08)
  • [50] Remote sensing image recognition based on dual-channel deep learning network
    Xianping Cui
    Cui Zou
    Zesong Wang
    Multimedia Tools and Applications, 2021, 80 : 27683 - 27699