Recognition of sunflower growth period based on deep learning from UAV remote sensing images

被引:8
|
作者
Song, Zhishuang [1 ,2 ,3 ]
Wang, Pengfei [1 ,2 ,3 ]
Zhang, Zhitao [4 ]
Yang, Shuqin [1 ,2 ,3 ]
Ning, Jifeng [2 ,3 ,5 ]
机构
[1] Northwest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Shaanxi, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Agr Internet Things, Yangling 712100, Shaanxi, Peoples R China
[3] Shaanxi Key Lab Agr Informat Percept & Intelligent, Yangling 712100, Shaanxi, Peoples R China
[4] Northwest A&F Univ, Coll Water Resources & Architectural Engn, Yangling 712100, Shaanxi, Peoples R China
[5] Northwest A&F Univ, Coll Informat Engn, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Sunflower; Growth period recognition; Deep learning; UAV remote sensing image; TIME-SERIES; LEAF-AREA; YIELD; IRRIGATION; WHEAT; L;
D O I
10.1007/s11119-023-09996-6
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Accurate determination of crops growth period plays an important role in field management and agricultural decision-making. The current work mostly extracts the crop normalized difference vegetation index curve from multi-temporal data and identifies the crop phenology based on its trend or special nodes. However, these time-series-based identification methods are difficult to be applied to practically crop monitoring tasks. In this paper, the unmanned aerial vehicle remote sensing platform is used to collect the multi-spectral images of the experimental field and identify the sunflower growth period based on the different population features during its different growth periods. According to the actual field management needs, this study obtains the plot-level sunflower growth period result by analyzing statistically the distribution area of different sunflower periods in a field plot. This study uses the data of 2018 in the study area to build the model and test its performance on the data of 2019. Through comparative experiments, PSPNet can achieve a good balance between accuracy and efficiency in this study. Further, given to time-series relationship between the adjacent growth periods classification, this paper proposes an improved loss function to weight different types of misclassification to optimize model performance. The results show that improved PSPNet with proposed weighted loss function achieves the optimal recognition accuracy of 89.01%, which provides a solution for sunflower growth period recognition based on the single-phase data.
引用
收藏
页码:1417 / 1438
页数:22
相关论文
共 50 条
  • [21] Airplane Detection of Optical Remote Sensing Images Based on Deep Learning
    Dong Yongfeng
    Zhang Changtao
    Wang Peng
    Feng Zhe
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (04)
  • [22] Deep learning based dense matching for aerial remote sensing images
    Liu J.
    Ji S.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (09): : 1141 - 1150
  • [23] Semantic Segmentation of Urban Remote Sensing Images Based on Deep Learning
    Liu, Jingyi
    Wu, Jiawei
    Xie, Hongfei
    Xiao, Dong
    Ran, Mengying
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [24] Multilevel Cloud Detection in Remote Sensing Images Based on Deep Learning
    Xie, Fengying
    Shi, Mengyun
    Shi, Zhenwei
    Yin, Jihao
    Zhao, Danpei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (08) : 3631 - 3640
  • [25] NATURAL LANGUAGE DESCRIPTION OF REMOTE SENSING IMAGES BASED ON DEEP LEARNING
    Zhang, Xiangrong
    Li, Xiang
    An, Jinliang
    Gao, Li
    Hou, Biao
    Li, Chen
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4798 - 4801
  • [26] Object detection in remote sensing images based on deep transfer learning
    Jinyong Chen
    Jianguo Sun
    Yuqian Li
    Changbo Hou
    Multimedia Tools and Applications, 2022, 81 : 12093 - 12109
  • [27] A Target Detection Algorithm for Remote Sensing Images Based on Deep Learning
    Lv, Yi
    Yin, Zhengbo
    Yu, Zhezhou
    CONTRAST MEDIA & MOLECULAR IMAGING, 2021, 2021
  • [28] Semantic segmentation of remote sensing images based on deep learning methods
    Huang, Cong
    Yang, Yao
    Wang, Huajun
    Ma, Yu
    Zhao, Jinquan
    Wan, Jun
    2021 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, INFORMATION AND COMMUNICATION ENGINEERING, 2021, 11933
  • [29] Retraction Note to: Image recognition of coastal environment and aerobics sports based on remote sensing images based on deep learning
    Min Liu
    Arabian Journal of Geosciences, 2021, 14 (22)
  • [30] RETRACTED ARTICLE: Image recognition of coastal environment and aerobics sports based on remote sensing images based on deep learning
    Min Liu
    Arabian Journal of Geosciences, 2021, 14 (18)