Accurate prediction of histological grading of intraductal papillary mucinous neoplasia using deep learning

被引:11
作者
Schulz, Dominik [1 ,5 ]
Heilmaier, Markus [1 ]
Phillip, Veit [1 ]
Treiber, Matthias [1 ]
Mayr, Ulrich [1 ]
Lahmer, Tobias [1 ]
Mueller, Julius [2 ]
Demir, Ihsan Ekin [3 ]
Friess, Helmut [3 ]
Reichert, Maximilian [1 ,4 ]
Schmid, Roland M. M. [1 ,4 ]
Abdelhafez, Mohamed [1 ]
机构
[1] Tech Univ Munich, Klin & Poliklin Innere Med 2, Klinikum rechts Isar, Munich, Germany
[2] Univ klinikum Freiburg, Klin Innere Med 2, Freiburg, Germany
[3] Tech Univ Munich, Klin & Poliklin Chirurg, Klinikum rechts Isar, Munich, Germany
[4] German Canc Consortium DKTK, Partner Site Munich, Munich, Germany
[5] Univ klinikum Augsburg, Med Klin 3, Stenglinstr 2,, D-86156 Augsburg, Germany
关键词
PANCREATIC CYSTS; MANAGEMENT; CANCER; GUIDELINES; DIAGNOSIS; MORTALITY; LESIONS; IMAGES; TIME;
D O I
10.1055/a-1971-1274
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background Risk stratification and recommendation for surgery for intraductal papillary mucinous neoplasm (IPMN) are currently based on consensus guidelines. Risk stratification from presurgery histology is only potentially decisive owing to the low sensitivity of fine-needle aspiration. In this study, we developed and validated a deep learning-based method to distinguish between IPMN with low grade dysplasia and IPMN with high grade dysplasia/invasive carcinoma using endoscopic ultrasound (EUS) images. Methods For model training, we acquired a total of 3355 EUS images from 43 patients who underwent pancreatectomy from March 2015 to August 2021. All patients had histologically proven IPMN. We used transfer learning to finetune a convolutional neural network and to classify low grade IPMN from high grade IPMN/invasive carcinoma. Our test set consisted of 1823 images from 27 patients, recruiting 11 patients retrospectively, 7 patients prospectively, and 9 patients externally. We compared our results with the prediction based on international consensus guidelines. Results Our approach could classify low grade from high grade/invasive carcinoma in the test set with an accuracy of 99.6% (95 %CI 99.5 %-99.9 %). Our deep learning model achieved superior accuracy in prediction of the histological outcome compared with any individual guideline, which have accuracies between 51.8% (95 %CI 31.9 %-71.3 %) and 70.4% (95 %CI 49.8-86.2). Conclusion This pilot study demonstrated that deep learning in IPMN-EUS images can predict the histological outcome with high accuracy.
引用
收藏
页码:415 / 422
页数:8
相关论文
共 35 条
  • [1] Deep learning for colorectal polyp detection: time for clinical implementation?
    Ahmad, Omer F.
    [J]. LANCET GASTROENTEROLOGY & HEPATOLOGY, 2020, 5 (04): : 330 - 331
  • [2] Barman R., 2019, P NATL C MACHINE LEA
  • [3] Management of pancreatic cysts and guidelines: what the gastroenterologist needs to know
    Buerlein, Ross C. D.
    Shami, Vanessa M.
    [J]. THERAPEUTIC ADVANCES IN GASTROINTESTINAL ENDOSCOPY, 2021, 14
  • [4] European cancer mortality predictions for the year 2021 with focus on pancreatic and female lung cancer
    Carioli, G.
    Malvezzi, M.
    Bertuccio, P.
    Boffetta, P.
    Levi, F.
    La Vecchia, C.
    Negri, E.
    [J]. ANNALS OF ONCOLOGY, 2021, 32 (04) : 478 - 487
  • [5] European evidence-based guidelines on pancreatic cystic neoplasms
    Del Chiaro, Marco
    Besselink, Marc G.
    Scholten, Lianne
    Bruno, Marco J.
    Cahen, Djuna L.
    Gress, Thomas M.
    van Hooft, Jeanin E.
    Lerch, Markus M.
    Mayerle, Julia
    Hackert, Thilo
    Satoi, Sohei
    Zerbi, Alessandro
    Cunningham, David
    De Angelis, Claudio
    Giovanni, Marc
    de-Madaria, Enrique
    Hegyi, Peter
    Rosendahl, Jonas
    Friess, Helmut
    Manfredi, Riccardo
    Levy, Philippe
    Real, Francisco X.
    Sauvanet, Alain
    Abu Hilal, Mohammed
    Marchegiani, Giovanni
    Esposito, Irene
    Ghaneh, Paula
    Engelbrecht, Marc R. W.
    Fockens, Paul
    van Huijgevoort, Nadine C. M.
    Wolfgang, Christopher
    Bassi, Claudio
    Gubergrits, Natalya B.
    Verbeke, Caroline
    Kloppel, Gunter
    Scarpa, Aldo
    Zamboni, Giuseppe
    Lennon, Anne Marie
    Sund, Malin
    Kartalis, Nikolaos
    Grenacher, Lars
    Falconi, Massimo
    Arnelo, Urban
    Kopchak, Kostantin V.
    Oppong, Kofi
    McKay, Colin
    Hauge, Truls
    Conlon, Kevin
    Adham, Mustapha
    Ceyhan, Guralp O.
    [J]. GUT, 2018, 67 (05) : 789 - 804
  • [6] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [7] Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus
    Ebigbo, Alanna
    Mendel, Robert
    Probst, Andreas
    Manzeneder, Johannes
    Prinz, Friederike
    de Souza, Luis A., Jr.
    Papa, Joao
    Palm, Christoph
    Messmann, Helmut
    [J]. GUT, 2020, 69 (04) : 615 - 616
  • [8] ACG Clinical Guideline: Diagnosis and Management of Pancreatic Cysts
    Elta, Grace H.
    Enestvedt, Brintha K.
    Sauer, Bryan G.
    Lennon, Anne Marie
    [J]. AMERICAN JOURNAL OF GASTROENTEROLOGY, 2018, 113 (04) : 464 - 479
  • [9] Main-duct Intraductal Papillary Mucinous Neoplasm High Cancer Risk in Duct Diameter of 5 to 9 mm
    Hackert, Thilo
    Fritz, Stefan
    Klauss, Miriam
    Bergmann, Frank
    Hinz, Ulf
    Strobel, Oliver
    Schneider, Lutz
    Buechler, Markus W.
    [J]. ANNALS OF SURGERY, 2015, 262 (05) : 875 - 881
  • [10] Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett's esophagus (with video)
    Hashimoto, Rintaro
    Requa, James
    Dao, Tyler
    Ninh, Andrew
    Tran, Elise
    Mai, Daniel
    Lugo, Michael
    Chehade, Nabil El-Hage
    Chang, Kenneth J.
    Karnes, Williams E.
    Samarasena, Jason B.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2020, 91 (06) : 1264 - +