Reynolds operators on Hom-Leibniz algebras

被引:2
作者
Wang, Dingguo [1 ]
Ke, Yuanyuan [2 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
[2] Jianghan Univ, Sch Artificial Intelligence, Wuhan 430056, Peoples R China
基金
中国国家自然科学基金;
关键词
Hom-Leibniz algebra; Reynolds operator; cohomology; NS-Hom-Leibniz algebra; LIE-ALGEBRAS;
D O I
10.2298/FIL2307117W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first introduce the notion of Reynolds operators on Hom-Leibniz algebras and give some constructions. Furthermore, we define the cohomology of Reynolds operators, and use this cohomology to study deformations of Reynolds operators. As applications, we introduce and study NS-Hom-Leibniz algebras as the underlying structure of Reynolds operators.
引用
收藏
页码:2117 / 2130
页数:14
相关论文
共 26 条
[1]  
Baxter G., 1960, Pacific J. Math, V10, P731, DOI [10.2140/pjm.1960.10.731, DOI 10.2140/PJM.1960.10.731]
[2]   The category of Yetter-Drinfel'd Hom-modules and the quantum Hom-Yang-Baxter equation [J].
Chen, Yuanyuan ;
Zhang, Liangyun .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (03)
[3]   THE FRT-TYPE THEOREM FOR THE HOM-LONG EQUATION [J].
Chen, Yuanyuan ;
Wang, Zhongwei ;
Zhang, Liangyun .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) :3931-3948
[4]   Integrals for monoidal Hom-Hopf algebras and their applications [J].
Chen, Yuanyuan ;
Wang, Zhongwei ;
Zhang, Liangyun .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
[5]   (Co)Homology and universal central extension of Hom-Leibniz algebras [J].
Cheng, Yong Sheng ;
Su, Yu Cai .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (05) :813-830
[6]  
Chtioui T, 2021, Arxiv, DOI [arXiv:2104.10724, 10.48550/arXiv.2104.10724, DOI 10.48550/ARXIV.2104.10724]
[7]   Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem [J].
Connes, A ;
Kreimer, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (01) :249-273
[8]  
Das A., arXiv
[9]   Nijenhuis operators on Hom-Lie algebras [J].
Das, Apurba ;
Sen, Sourav .
COMMUNICATIONS IN ALGEBRA, 2022, 50 (03) :1038-1054
[10]   Twisted Rota-Baxter operators and Reynolds operators on Lie algebras and NS-Lie algebras [J].
Das, Apurba .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (09)