Automatic detection of pulmonary embolism in computed tomography pulmonary angiography using Scaled-YOLOv4

被引:10
作者
Xu, Haijun [1 ]
Li, Huiyao [2 ]
Xu, Qifei [3 ]
Zhang, Zewei [4 ]
Wang, Ping [1 ]
Li, Dong [5 ]
Guo, Li [1 ]
机构
[1] Tianjin Med Univ, Sch Med Imaging, Tianjin 300203, Peoples R China
[2] Capital Med Univ, Beijing Shijitan Hosp, Dept MR, Beijing, Peoples R China
[3] Linyi Peoples Hosp, Dept Radiol, Linyi, Shandong, Peoples R China
[4] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Canc Ctr, Natl Clin Res Ctr Canc,Dept Nucl Med, Beijing, Peoples R China
[5] Tianjin Med Univ Gen Hosp, Dept Radiol, Tianjin 300052, Peoples R China
基金
中国国家自然科学基金;
关键词
computed tomography (CT); computer-aided detection; deep learning; pulmonary embolism; YOLO; CT;
D O I
10.1002/mp.16218
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundPulmonary embolism (PE) is a common but fatal clinical condition and the gold standard of diagnosis is computed tomography pulmonary angiography (CTPA). Prompt diagnosis and rapid treatment can dramatically reduce mortality in patients. However, the diagnosis of PE is often delayed and missed. MethodsIn this study, we identified a deep learning model Scaled-YOLOv4 that enables end-to-end automated detection of PE to help solve these problems. A total of 307 CTPA data (Tianjin 142 cases, Linyi 133 cases, and FUMPE 32 cases) were included in this study. The Tianjin dataset was divided 10 times in the ratio of training set: validation set: test set = 7:2:1 for model tuning, and both the Linyi and FUMPE datasets were used as independent external test sets to evaluate the generalization of the model. ResultsScaled-YOLOv4 was able to process one patient in average 3.55 s [95% CI: 3.51-3.59 s]. It also achieved an average precision (AP) of 83.04 [95% CI: 79.36-86.72] for PE detection on the Tianjin test set, and 75.86 [95% CI: 75.48-76.24] and 72.74 [95% CI: 72.10-73.38] on Linyi and FUMPE, respectively. ConclusionsThis deep learning algorithm helps detect PE in real time, providing radiologists with aided diagnostic evidence without increasing their workload, and can effectively reduce the probability of delayed patient diagnosis.
引用
收藏
页码:4340 / 4350
页数:11
相关论文
共 38 条
[1]   Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models [J].
Abdurahman, Fetulhak ;
Fante, Kinde Anlay ;
Aliy, Mohammed .
BMC BIOINFORMATICS, 2021, 22 (01)
[2]   Delay and misdiagnosis in sub-massive and non-massive acute pulmonary embolism [J].
Alonso-Martinez, J. L. ;
Anniccherico Sanchez, F. J. ;
Urbieta Echezarreta, M. A. .
EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2010, 21 (04) :278-282
[3]   CT depiction of pulmonary emboli: Display window settings [J].
Bae, KT ;
Mody, GN ;
Balfe, DM ;
Bhalla, S ;
Gierada, DS ;
Gutierrez, FR ;
Menias, CO ;
Woodard, PK ;
Goo, IM ;
Hildebolt, CF .
RADIOLOGY, 2005, 236 (02) :677-684
[4]  
Bochkovskiy A., 2020, CORR
[5]  
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
[6]   The mortality of untreated pulmonary embolism in emergency department patients [J].
Calder, KK ;
Herbert, M ;
Henderson, SO .
ANNALS OF EMERGENCY MEDICINE, 2005, 45 (03) :302-310
[7]   The RSNA Pulmonary Embolism CT Dataset [J].
Cob, Errol ;
Kitamura, Felipe C. ;
Hobbs, Stephen B. ;
Wu, Carol C. ;
Lungren, Matthew P. ;
Prevedello, Luciano M. ;
Kalpathy-Cramer, Jayashree ;
Ball, Robyn L. ;
Shih, George ;
Stein, Anouk ;
Halabi, Safwan S. ;
Akinmakas, Emre ;
Law, Meng ;
Kumar, Parveen ;
Manzalawi, Karam A. ;
Rubio, Dennis Charles Nelson ;
Sechrist, Jacob W. ;
Germaine, Pauline ;
Lopez, Eva Castro ;
Amerio, Tomas ;
Gupta, Puslpender ;
Jain, Manoj ;
Kay, Fernando U. ;
Lin, Cheng Ting ;
Sen, Saugata ;
Revels, Jonathan Wesley ;
Brussaarel, Carok C. ;
Mongan, John .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (02) :1-7
[8]   Computer-aided detection of pulmonary embolism:: Influence on radiologists' detection performance with respect to vessel segments [J].
Das, Marco ;
Muehlenbruch, Georg ;
Helm, Anita ;
Bakai, Annemarie ;
Salganicoff, Marcos ;
Stanzel, Sven ;
Liang, Jianming ;
Wolf, Matthias ;
Guenther, Rolf W. ;
Wildberger, Joachim Ernst .
EUROPEAN RADIOLOGY, 2008, 18 (07) :1350-1355
[9]   Accuracy of CT in the diagnosis of pulmonary embolism: A systematic literature review [J].
Eng, J ;
Krishnan, JA ;
Segal, JB ;
Bolger, DT ;
Tamariz, LJ ;
Streiff, MB ;
Jenckes, MW ;
Bass, EB .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2004, 183 (06) :1819-1827
[10]  
Expert Panel on Vascular Imaging:, 2018, J Am Coll Radiol, V15, pS413, DOI [10.1016/j.jacr.2018.09.028, 10.1016/j.jacr.2018.09.028]