Health status prediction of lithium ion batteries based on zero-shot learning

被引:1
作者
Ge, Yang [1 ]
Ma, Jiaxin [1 ]
Sun, Guodong [1 ]
机构
[1] Changshu Inst Technol, Sch Mech Engn, Changshu 215500, Peoples R China
关键词
Battery health status; Transfer learning; Multi-task; Domain adaptation;
D O I
10.1016/j.est.2023.108494
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, we propose an adaptive transfer learning method for predicting battery health status. We construct a multi-task transfer learning framework to address the problem of transferring battery health status predictions across different usage scenarios. To overcome the challenge of determining the optimal weight for different task loss functions, we introduce an adaptive optimization method that automatically assigns the optimal weight to the multi-task objective function. Our experiments on lithium-ion battery data from Huazhong University of Science and Technology show that our proposed method outperforms other typical prediction methods.
引用
收藏
页数:8
相关论文
共 38 条
[11]   A health assessment framework of lithium-ion batteries for cyber defense [J].
Hong, Sheng ;
Zeng, Yining .
APPLIED SOFT COMPUTING, 2021, 101
[12]   Vehicle energy system active defense: A health assessment of lithium-ion batteries [J].
Hong, Sheng ;
Yue, Tianyu ;
Liu, Hao .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) :10081-10099
[13]   Multi-Scale Prediction of RUL and SOH for Lithium-Ion Batteries Based on WNN-UPF Combined Model [J].
Jia Jianfang ;
Wang Keke ;
Pang Xiaoqiong ;
Shi Yuanhao ;
Wen Jie ;
Zeng Jianchao .
CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (01) :26-35
[14]   State of Charge Prediction Algorithm of Lithium-Ion Battery Based on PSO-SVR Cross Validation [J].
Li, Ran ;
Xu, Shihui ;
Li, Sibo ;
Zhou, Yongqin ;
Zhou, Kai ;
Liu, Xianzhong ;
Yao, Jie .
IEEE ACCESS, 2020, 8 :10234-10242
[15]   A Transferred Recurrent Neural Network for Battery Calendar Health Prognostics of Energy-Transportation Systems [J].
Liu, Kailong ;
Peng, Qiao ;
Sun, Hongbin ;
Fei, Minrui ;
Ma, Huimin ;
Hu, Tianyu .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (11) :8172-8181
[16]   A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries [J].
Liu, Xinyan ;
Zhang, Xue-Qiang ;
Chen, Xiang ;
Zhu, Gao-Long ;
Yan, Chong ;
Huang, Jia-Qi ;
Peng, Hong-Jie .
JOURNAL OF ENERGY CHEMISTRY, 2022, 68 :548-555
[17]   State of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learning [J].
Liu, Yu ;
Shu, Xing ;
Yu, Hanzhengnan ;
Shen, Jiangwei ;
Zhang, Yuanjian ;
Liu, Yonggang ;
Chen, Zheng .
JOURNAL OF ENERGY STORAGE, 2021, 37
[18]   A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering, framework [J].
Lyu, Chao ;
Lai, Qingzhi ;
Ge, Tengfei ;
Yu, Honghai ;
Wang, Lixin ;
Ma, Na .
ENERGY, 2017, 120 :975-984
[19]   Real-time personalized health status prediction of lithium-ion batteries using deep transfer learning [J].
Ma, Guijun ;
Xu, Songpei ;
Jiang, Benben ;
Cheng, Cheng ;
Yang, Xin ;
Shen, Yue ;
Yang, Tao ;
Huang, Yunhui ;
Ding, Han ;
Yuan, Ye .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (10) :4083-4094
[20]   A hybrid transfer learning scheme for remaining useful life prediction and cycle life test optimization of different formulation Li-ion power batteries [J].
Ma, Jian ;
Shang, Pengchao ;
Zou, Xinyu ;
Ma, Ning ;
Ding, Yu ;
Sun, Jinwen ;
Cheng, Yujie ;
Tao, Laifa ;
Lu, Chen ;
Su, Yuzhuan ;
Chong, Jin ;
Jin, Haizu ;
Lin, Yongshou .
APPLIED ENERGY, 2021, 282