Health status prediction of lithium ion batteries based on zero-shot learning

被引:1
作者
Ge, Yang [1 ]
Ma, Jiaxin [1 ]
Sun, Guodong [1 ]
机构
[1] Changshu Inst Technol, Sch Mech Engn, Changshu 215500, Peoples R China
关键词
Battery health status; Transfer learning; Multi-task; Domain adaptation;
D O I
10.1016/j.est.2023.108494
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, we propose an adaptive transfer learning method for predicting battery health status. We construct a multi-task transfer learning framework to address the problem of transferring battery health status predictions across different usage scenarios. To overcome the challenge of determining the optimal weight for different task loss functions, we introduce an adaptive optimization method that automatically assigns the optimal weight to the multi-task objective function. Our experiments on lithium-ion battery data from Huazhong University of Science and Technology show that our proposed method outperforms other typical prediction methods.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Production caused variation in capacity aging trend and correlation to initial cell performance [J].
Baumhoefer, Thorsten ;
Bruehl, Manuel ;
Rothgang, Susanne ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2014, 247 :332-338
[2]   A Multioutput Convolved Gaussian Process for Capacity Forecasting of Li-Ion Battery Cells [J].
Chehade, Abdallah A. ;
Hussein, Ala A. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (01) :896-909
[3]   A novel remaining useful life prediction framework for lithium-ion battery using grey model and particle filtering [J].
Chen, Lin ;
Wang, Huimin ;
Chen, Jing ;
An, Jingjing ;
Ji, Bing ;
Lyu, Zhiqiang ;
Cao, Wenping ;
Pan, Haihong .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (09) :7435-7449
[4]   Adaptive online capacity prediction based on transfer learning for fast charging lithium-ion batteries [J].
Chen, Zhang ;
Shen, Wenjing ;
Chen, Liqun ;
Wang, Shuqiang .
ENERGY, 2022, 248
[5]   Remaining Useful Life Prediction of Lithium-Ion Battery via a Sequence Decomposition and Deep Learning Integrated Approach [J].
Chen, Zhang ;
Chen, Liqun ;
Shen, Wenjing ;
Xu, Kangkang .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) :1466-1479
[6]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[7]   SOH and RUL prediction of Li-ion batteries based on improved Gaussian process regression [J].
Feng, Hailin ;
Shi, Guoling .
JOURNAL OF POWER ELECTRONICS, 2021, 21 (12) :1845-1854
[8]   Cross Trajectory Gaussian Process Regression Model for Battery Health Prediction [J].
Feng, Jianshe ;
Jia, Xiaodong ;
Cai, Haoshu ;
Zhu, Feng ;
Li, Xiang ;
Lee, Jay .
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2021, 9 (05) :1217-1226
[9]  
Fu P.Y., 2022, SENSORS-BASEL, V22
[10]   Lithium Ion Battery Health Prediction via Variable Mode Decomposition and Deep Learning Network With Self-Attention Mechanism [J].
Ge, Yang ;
Zhang, Fusheng ;
Ren, Yong .
FRONTIERS IN ENERGY RESEARCH, 2022, 10