Sparse Hierarchical Parallel Residual Networks Ensemble for Infrared Image Stream-Based Remaining Useful Life Prediction

被引:1
作者
Jiang, Yimin [1 ]
Xia, Tangbin [1 ]
Fang, Xiaolei [2 ]
Wang, Dong [1 ]
Pan, Ershun [1 ]
Xi, Lifeng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Dept Ind Engn & Management, Shanghai 200240, Peoples R China
[2] North Carolina State Univ, Edward P Fitts Dept Ind & Syst Engn, Raleigh, NC 27607 USA
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Degradation; Feature extraction; Streaming media; Residual neural networks; Ensemble learning; Computer architecture; Kernel; Hierarchical parallel residual network (HPRN); infrared image stream-based prognostics; remaining useful life (RUL) prediction; sparse ensemble; FAULT-DIAGNOSIS; DECOMPOSITION; PROGNOSTICS; MACHINE;
D O I
10.1109/TII.2022.3229493
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Infrared thermography captures real-time degradation temperature information, facilitating noncontact machine health monitoring. However, the inherent multiscale characteristics and spatiotemporal degradation discrepancy in infrared images pose a challenge in learning discriminative degradation features and adaptive prognostic analytics. This article presents a sparse hierarchical parallel residual networks ensemble (SHPRNE) method to tackle this challenge. First, the hierarchical parallel residual network (HPRN) leverages parallel multiscale kernels to capture complementary degradation patterns separately and embeds a hierarchical residual connection procedure to facilitate the interactivity between coarse-to-fine level features. Moreover, SHPRNE develops a sparse ensemble algorithm integrated with a synergy of network pruning and local minima perpetuation to derive diverse HPRNs while alleviating the parameter storage budget. Pruned HPRNs with varying sparsity and local minima are further integrated into an ensemble learner with higher generalization. Case studies on two infrared image datasets are conducted to demonstrate the effectiveness and superiority of the proposed method.
引用
收藏
页码:10613 / 10623
页数:11
相关论文
共 29 条
  • [1] Sparse Low-Rank Tensor Decomposition for Metal Defect Detection Using Thermographic Imaging Diagnostics
    Ahmed, Junaid
    Gao, Bin
    Woo, Wai lok
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (03) : 1810 - 1820
  • [2] Image-Based Prognostics Using Deep Learning Approach
    Aydemir, Gurkan
    Paynabar, Kamran
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (09) : 5956 - 5964
  • [3] Deep Focus Parallel Convolutional Neural Network for Imbalanced Classification of Machinery Fault Diagnostics
    Duan, Andongzhe
    Guo, Liang
    Gao, Hongli
    Wu, Xiangdong
    Dong, Xun
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8680 - 8689
  • [4] Image-Based Prognostics Using Penalized Tensor Regression
    Fang, Xiaolei
    Paynabar, Kamran
    Gebraeel, Nagi
    [J]. TECHNOMETRICS, 2019, 61 (03) : 369 - 384
  • [5] Residual Life Predictions in the Absence of Prior Degradation Knowledge
    Gebraeel, Nagi
    Elwany, Alaa
    Pan, Jing
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2009, 58 (01) : 106 - 117
  • [6] Han S, 2015, ADV NEUR IN, V28
  • [7] Thermal Imaging and Vibration-Based Multisensor Fault Detection for Rotating Machinery
    Janssens, Olivier
    Loccufier, Mia
    Van Hoecke, Sofie
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (01) : 434 - 444
  • [8] Deep Learning for Infrared Thermal Image Based Machine Health Monitoring
    Janssens, Olivier
    Van de Walle, Rik
    Loccufier, Mia
    Van Hoecke, Sofie
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (01) : 151 - 159
  • [9] Thermal image based fault diagnosis for rotating machinery
    Janssens, Olivier
    Schulz, Raiko
    Slavkovikj, Viktor
    Stockman, Kurt
    Loccufier, Mia
    Van de Walle, Rik
    Van Hoecke, Sofie
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2015, 73 : 78 - 87
  • [10] Ensemble learning based on approximate reducts and bootstrap sampling
    Jiang, Feng
    Yu, Xu
    Du, Junwei
    Gong, Dunwei
    Zhang, Youqiang
    Peng, Yanjun
    [J]. INFORMATION SCIENCES, 2021, 547 : 797 - 813