A benchmark dataset for deep learning-based airplane detection: HRPlanes

被引:8
|
作者
Bakirman, Tolga [1 ]
Sertel, Elif [2 ]
机构
[1] Yildiz Tech Univ, Geomat Engn Dept, Istanbul, Turkiye
[2] Istanbul Tech Univ, Geomat Engn Dept, Istanbul, Turkiye
来源
INTERNATIONAL JOURNAL OF ENGINEERING AND GEOSCIENCES | 2023年 / 8卷 / 03期
关键词
Airplane detection; Deep learning; YOLO; Faster R-CNN; Google Earth; REMOTE-SENSING IMAGES; OBJECT DETECTION; AIRCRAFT DETECTION; ROTATION-INVARIANT; SATELLITE IMAGES; RECOGNITION;
D O I
10.26833/ijeg.1107890
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Airplane detection from satellite imagery is a challenging task due to the complex backgrounds in the images and differences in data acquisition conditions caused by the sensor geometry and atmospheric effects. Deep learning methods provide reliable and accurate solutions for automatic detection of airplanes; however, huge amount of training data is required to obtain promising results. In this study, we create a novel airplane detection dataset called High Resolution Planes (HRPlanes) by using images from Google Earth (GE) and labeling the bounding box of each plane on the images. HRPlanes include GE images of several different airports across the world to represent a variety of landscape, seasonal and satellite geometry conditions obtained from different satellites. We evaluated our dataset with two widely used object detection methods namely YOLOv4 and Faster R-CNN. Our preliminary results show that the proposed dataset can be a valuable data source and benchmark data set for future applications. Moreover, proposed architectures and results of this study could be used for transfer learning of different datasets and models for airplane detection.
引用
收藏
页码:212 / 223
页数:12
相关论文
共 50 条
  • [41] High Precision Deep Learning-Based Tabular Position Detection
    Jiang, JiChu
    Simsek, Murat
    Kantarci, Burak
    Khan, Shahzad
    2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2020, : 282 - 288
  • [42] A Deep Learning-Based Lightweight Model for the Detection of Marine Fishes
    Wu, Fei
    Zhang, Yitao
    Wang, Lang
    Hu, Qiu
    Fan, Shengli
    Cai, Weiming
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (11)
  • [43] A Comprehensive Review of Deep Learning-Based PCB Defect Detection
    Chen, Xing
    Wu, Yonglei
    He, Xingyou
    Ming, Wuyi
    IEEE ACCESS, 2023, 11 : 139017 - 139038
  • [44] Object detection and recognition using deep learning-based techniques
    Sharma, Preksha
    Gupta, Surbhi
    Vyas, Sonali
    Shabaz, Mohammad
    IET COMMUNICATIONS, 2023, 17 (13) : 1589 - 1599
  • [45] Deep Learning-Based Thermal Image Reconstruction and Object Detection
    Batchuluun, Ganbayar
    Kang, Jin Kyu
    Nguyen, Dat Tien
    Pham, Tuyen Danh
    Arsalan, Muhammad
    Park, Kang Ryoung
    IEEE ACCESS, 2021, 9 : 5951 - 5971
  • [46] Deep Learning-Based Action Detection in Untrimmed Videos: A Survey
    Vahdani, Elahe
    Tian, Yingli
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4302 - 4320
  • [47] A Comprehensive Review of Deep Learning-Based Crack Detection Approaches
    Hamishebahar, Younes
    Guan, Hong
    So, Stephen
    Jo, Jun
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [48] A novel deep learning-based method for detection of weeds in vegetables
    Jin, Xiaojun
    Sun, Yanxia
    Che, Jun
    Bagavathiannan, Muthukumar
    Yu, Jialin
    Chen, Yong
    PEST MANAGEMENT SCIENCE, 2022, 78 (05) : 1861 - 1869
  • [49] A Deep Learning-based Stress Detection Algorithm with Speech Signal
    Han, Hyewon
    Byun, Kyunggeun
    Kang, Hong-Goo
    AVSU'18: PROCEEDINGS OF THE 2018 WORKSHOP ON AUDIO-VISUAL SCENE UNDERSTANDING FOR IMMERSIVE MULTIMEDIA, 2018, : 11 - 15
  • [50] CGDINet: A Deep Learning-Based Salient Object Detection Algorithm
    Hu, Chengyu
    Guo, Jianxin
    Xie, Hanfei
    Zhu, Qing
    Yuan, Baoxi
    Gao, Yujie
    Ma, Xiangyang
    Chen, Jialu
    Tian, Juan
    IEEE ACCESS, 2025, 13 : 4697 - 4723