Stability theory for metal pad roll in cylindrical liquid metal batteries

被引:2
作者
Herreman, W. [1 ]
Wierzchalek, L. [1 ]
Horstmann, G. M. [2 ]
Cappanera, L. [3 ]
Nore, C. [4 ]
机构
[1] Univ Paris Saclay, CNRS, Lab FAST, F-91405 Orsay, France
[2] Helmholtz Zent Dresden Rossendorf, Bautzner Landstr 400, D-01328 Dresden, Germany
[3] Univ Houston, Dept Math, Houston, TX 77204 USA
[4] Univ Paris Saclay, CNRS, Lab Interdisciplinaire Sci Numer, F-91405 Orsay, France
关键词
MHD and electrohydrodynamics; waves/free-surface flows; INTERFACE INSTABILITY; MELT FLOWS; WAVES; MHD; SURFACE; MODEL;
D O I
10.1017/jfm.2023.238
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
When liquid metal batteries are charged or discharged, strong electrical currents are passing through the three liquid layers that we find in their interior. This may result in the metal pad roll instability that drives gravity waves on the interfaces between the layers. In this paper, we investigate theoretically metal pad roll instability in idealised cylindrical liquid metal batteries that were simulated previously by Weber et al. (Phys. Fluids, vol. 29, no. 5, 2017b, 054101) and Horstmann et al. (J. Fluid Mech., vol. 845, 2018, pp. 1-35). Near the instability threshold, we expect weakly destabilised gravity waves, and in this parameter regime, we can use perturbation methods to find explicit formulas for the growth rate of all possible waves. This perturbative approach also allows us to include dissipative effects, hence we can locate the instability threshold with good precision. We show that our theoretical growth rates are in quantitative agreement with previous and new direct numerical simulations. We explain how our theory can be used to estimate a lower bound on cell size beneath which metal pad roll instability is unlikely.
引用
收藏
页数:37
相关论文
共 50 条
[21]   EXPERIMENTAL OBSERVATION OF METAL-ELECTROLYTE INTERFACE STABILITY IN A MODEL OF LIQUID METAL BATTERY [J].
Grants, I ;
Baranovskis, R. .
MAGNETOHYDRODYNAMICS, 2021, 57 (02) :171-179
[22]   DYNAMO THEORY AND LIQUID-METAL MHD EXPERIMENTS [J].
LIELAUSIS, O .
ASTRONOMISCHE NACHRICHTEN, 1994, 315 (04) :303-317
[23]   Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries [J].
Zhang, Haiqin ;
Qu, Wenjie ;
Chen, Nan ;
Huang, Yongxin ;
Li, Li ;
Wu, Feng ;
Chen, Renjie .
ELECTROCHIMICA ACTA, 2018, 285 :78-85
[24]   Magneto-hydrodynamic stability of a liquid metal battery in discharge [J].
Tucs, A. ;
Bojarevics, V ;
Pericleous, K. .
EPL, 2018, 124 (02)
[25]   Solvable theory of a strange metal at the breakdown of a heavy Fermi liquid [J].
Aldape, Erik E. ;
Cookmeyer, Tessa ;
Patel, Aavishkar A. ;
Altman, Ehud .
PHYSICAL REVIEW B, 2022, 105 (23)
[26]   Thermal convection in a liquid metal battery [J].
Shen, Yuxin ;
Zikanov, Oleg .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2016, 30 (04) :275-294
[27]   MODELLING OF METAL FLOW AND METAL PAD HEAVING IN A REALISTIC REFERENCE ALUMINUM REDUCTION CELL [J].
Hua, Jinsong ;
Rudshaug, Magne ;
Droste, Christian ;
Jorgensen, Robert ;
Giskeodegard, Nils-Haavard .
LIGHT METALS 2016, 2016, :339-344
[28]   A Polymer-in-Salt Electrolyte with Enhanced Oxidative Stability for Lithium Metal Polymer Batteries [J].
Wu, Haiping ;
Gao, Peiyuan ;
Jia, Hao ;
Zou, Lianfeng ;
Zhang, Linchao ;
Cao, Xia ;
Engelhard, Mark H. ;
Bowden, Mark E. ;
Ding, Michael S. ;
Hu, Jiangtao ;
Hu, Dehong ;
Burton, Sarah D. ;
Xu, Kang ;
Wang, Chongmin ;
Zhang, Ji-Guang ;
Xu, Wu .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (27) :31583-31593
[29]   Liquid Metal Vacuoles [J].
Zhao, Xi ;
Liu, Jing .
ADVANCED MATERIALS INTERFACES, 2022, 9 (20)
[30]   Effect of metal-metal and metal-support interaction on activity and stability of Pd-Rh/alumina in CO oxidation [J].
Vedyagin, Aleksey A. ;
Volodin, Alexander M. ;
Kenzhin, Roman M. ;
Stoyanovskii, Vladimir O. ;
Shubin, Yury V. ;
Plyusnin, Pavel E. ;
Mishakov, Ilya V. .
CATALYSIS TODAY, 2017, 293 :73-81