New Families of MDS Symbol-Pair Codes From Matrix-Product Codes

被引:7
作者
Luo, Gaojun [1 ]
Ezerman, Martianus Frederic [1 ,2 ]
Ling, San [1 ]
Pan, Xu [3 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
[2] Sandhiguna, Kota Batam 29461, Kepulauan Riau, Indonesia
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Codes; Symbols; Hamming distances; Codecs; Writing; Scholarships; Reed-Solomon codes; Matrix-product code; maximum distance separable code; symbol-pair code; ROOT CONSTACYCLIC CODES; CYCLIC CODES; DISTANCE; CONSTRUCTIONS; POLYNOMIALS;
D O I
10.1109/TIT.2022.3220638
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In emerging storage technologies, the outputs of the channels consist of overlapping pairs of symbols. The errors are no longer individual symbols. Controlling them calls for a different approach. Symbol-pair codes have been proposed as a solution. The error-correcting capability of such a code depends on its minimum pair distance instead of the usual minimum Hamming distance. Longer codes can be conveniently constructed from known shorter ones by a matrix-product approach. The parameters of a matrix-product code can be determined from the parameters of the ingredient codes. We construct a new family of maximum distance separable (MDS) symbol-pair matrix-product codes. Codes which are permutation equivalent to matrix-product codes may have improved minimum pair distances. We present four new families of MDS symbol-pair codes and a new family of almost MDS symbol-pair codes. The codes in these five new families are permutation equivalent to matrix-product codes. Each of our five constructions identifies permutations that can increase the minimum pair distances. We situate the new families among previously known families of MDS symbol-pair codes to highlight the versatility of our matrix-product construction route.
引用
收藏
页码:1567 / 1587
页数:21
相关论文
共 36 条
  • [21] A Construction of New MDS Symbol-Pair Codes
    Kai, Xiaoshan
    Zhu, Shixin
    Li, Ping
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) : 5828 - 5834
  • [22] PSEUDOCYCLIC MAXIMUM-DISTANCE-SEPARABLE CODES
    KRISHNA, A
    SARWATE, DV
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) : 880 - 884
  • [23] Laaouine J, 2023, J APPL MATH COMPUT, V69, P219, DOI 10.1007/s12190-022-01738-7
  • [24] Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes
    Li, Shuxing
    Ge, Gennian
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (03) : 359 - 372
  • [25] Lidl R., 1997, FINITE FIELDS
  • [26] On the algebraic structure of quasi-cyclic codes I:: Finite fields
    Ling, S
    Solé, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) : 2751 - 2760
  • [27] Ling S., 2004, CODING THEORY 1 COUR
  • [28] Generalized Pair Weights of Linear Codes and Linear Isomorphisms Preserving Pair Weights
    Liu, Hongwei
    Pan, Xu
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (01) : 105 - 117
  • [29] Constructions of MDS symbol-pair codes with minimum distance seven or eight
    Ma, Junru
    Luo, Jinquan
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (10) : 2337 - 2359
  • [30] MDS symbol-pair codes from repeated-root cyclic codes
    Ma, Junru
    Luo, Jinquan
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (01) : 121 - 137