New Families of MDS Symbol-Pair Codes From Matrix-Product Codes

被引:7
作者
Luo, Gaojun [1 ]
Ezerman, Martianus Frederic [1 ,2 ]
Ling, San [1 ]
Pan, Xu [3 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
[2] Sandhiguna, Kota Batam 29461, Kepulauan Riau, Indonesia
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Codes; Symbols; Hamming distances; Codecs; Writing; Scholarships; Reed-Solomon codes; Matrix-product code; maximum distance separable code; symbol-pair code; ROOT CONSTACYCLIC CODES; CYCLIC CODES; DISTANCE; CONSTRUCTIONS; POLYNOMIALS;
D O I
10.1109/TIT.2022.3220638
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In emerging storage technologies, the outputs of the channels consist of overlapping pairs of symbols. The errors are no longer individual symbols. Controlling them calls for a different approach. Symbol-pair codes have been proposed as a solution. The error-correcting capability of such a code depends on its minimum pair distance instead of the usual minimum Hamming distance. Longer codes can be conveniently constructed from known shorter ones by a matrix-product approach. The parameters of a matrix-product code can be determined from the parameters of the ingredient codes. We construct a new family of maximum distance separable (MDS) symbol-pair matrix-product codes. Codes which are permutation equivalent to matrix-product codes may have improved minimum pair distances. We present four new families of MDS symbol-pair codes and a new family of almost MDS symbol-pair codes. The codes in these five new families are permutation equivalent to matrix-product codes. Each of our five constructions identifies permutations that can increase the minimum pair distances. We situate the new families among previously known families of MDS symbol-pair codes to highlight the versatility of our matrix-product construction route.
引用
收藏
页码:1567 / 1587
页数:21
相关论文
共 36 条
  • [1] Matrix-product codes over Fq
    Blackmore, T
    Norton, GH
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2001, 12 (06) : 477 - 500
  • [2] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [3] Cassuto Yuval, 2011, Proceedings of the 2011 IEEE International Symposium on Information Theory - ISIT, P2348, DOI 10.1109/ISIT.2011.6033982
  • [4] Codes for Symbol-Pair Read Channels
    Cassuto, Yuval
    Blaum, Mario
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (12) : 8011 - 8020
  • [5] Mixed exponential sums over finite fields
    Castro, FN
    Moreno, CJ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) : 2529 - 2537
  • [6] Maximum Distance Separable Codes for Symbol-Pair Read Channels
    Chee, Yeow Meng
    Ji, Lijun
    Kiah, Han Mao
    Wang, Chengmin
    Yin, Jianxing
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) : 7259 - 7267
  • [7] Constacyclic Symbol-Pair Codes: Lower Bounds and Optimal Constructions
    Chen, Bocong
    Lin, Liren
    Liu, Hongwei
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (12) : 7661 - 7666
  • [8] Primitive polynomials with a prescribed coefficient
    Cohen, Stephen D.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2006, 12 (03) : 425 - 491
  • [9] New constructions of MDS symbol-pair codes
    Ding, Baokun
    Ge, Gennian
    Zhang, Jun
    Zhang, Tao
    Zhang, Yiwei
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (04) : 841 - 859
  • [10] MDS Symbol-Pair Repeated-Root Constacylic Codes of Prime Power Lengths Over Fpm + uFpm
    Dinh, H. Q.
    Kumam, P.
    Kumar, P.
    Satpati, S.
    Singh, A. K.
    Yamaka, W.
    [J]. IEEE ACCESS, 2019, 7 : 145039 - 145048