On multiple solitons of glycolysis reaction-diffusion system for the chemical concentration

被引:7
作者
Iqbal, Muhammad S. [1 ]
Baber, Muhammad Z. [2 ]
Inc, Mustafa [3 ,4 ]
Younis, Muhammad [5 ]
Ahmed, Nauman [2 ]
Qasim, Muhammad [2 ]
机构
[1] NUST, Mil Coll Signals, Dept Humanities & Basic Sci & Humanities, Islamabad, Pakistan
[2] Univ Lahore, Dept Math & Stat, Lahore, Pakistan
[3] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkiye
[4] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Univ Punjab, Dept Comp Sci, Lahore, Pakistan
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2024年 / 38卷 / 04期
关键词
Analytical solutions; chemical reaction model; glycolysis system; 06-model expansion method; NONLINEAR SCHRODINGER-EQUATION; OPTICAL SOLITONS; 4TH-ORDER DISPERSION; EVOLUTION-EQUATIONS; CONSERVATION-LAWS; MODEL; DARK; KERR; AUTOCATALYSIS; OSCILLATION;
D O I
10.1142/S0217979224500553
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this research, the nonlinear mathematical model for enzyme-catalyzed reaction-diffusion phenomena has been analyzed for the exact solutions investigated analytically. As a result, it is critical to investigate this concept from a mathematical standpoint. The f6-model expansion method is used to extract the analytical solutions which give the chemical concentration. These variables behave differently depending on the diffusion and dimensionless input flux rate parameter. Furthermore, the existence of these solutions is also discussed under different constraint conditions and variables of chemical concentrations are represented in hyperbolic, trigonometric and rational forms. For various values, the 3D behavior of these concentrations is also depicted.
引用
收藏
页数:30
相关论文
共 50 条
[1]   Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov-Kuznetsov equation [J].
Baleanu, Dumitru ;
Inc, Mustafa ;
Yusuf, Abdullahi ;
Aliyu, Aliyu Isa .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (06) :861-876
[2]   Dark optical solitons and conservation laws to the resonance nonlinear Shrodinger's equation with Kerr law nonlinearity [J].
Baleanu, Dumitru ;
Inc, Mustafa ;
Aliyu, Aliyu Isa ;
Yusuf, Abdullahi .
OPTIK, 2017, 147 :248-255
[3]  
BHARGAVA SC, 1980, B MATH BIOL, V42, P829
[4]   New and more general traveling wave solutions for nonlinear Schrodinger equation [J].
Cheemaa, Nadia ;
Younis, Muhammad .
WAVES IN RANDOM AND COMPLEX MEDIA, 2016, 26 (01) :30-41
[5]   Some closed-form solutions, conservation laws, and various solitary waves to the (2+1)-D potential B-K equation via Lie symmetry approach [J].
Gaber, A. A. ;
Alsharari, F. ;
Kumar, Sachin .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (20)
[6]   Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model [J].
Guo, Gaihui ;
Li, Bingfang ;
Wei, Meihua ;
Wu, Jianhua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (01) :265-277
[8]   Optical solitons with Lakshmanan-Porsezian-Daniel model by modified extended direct algebraic method [J].
Hubert, Malwe Boudoue ;
Betchewe, Gambo ;
Justin, Mibaile ;
Doka, Serge Y. ;
Crepin, Kofane Timoleon ;
Biswas, Anjan ;
Zhou, Qin ;
Alshomrani, Ali Saleh ;
Ekici, Mehmet ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 162 :228-236
[9]   Optical solitons to the nonlinear Shrodinger's equation with spatio-temporal dispersion using complex amplitude ansatz [J].
Inc, Mustafa ;
Aliyu, Aliyu Isa ;
Yusuf, Abdullahi .
JOURNAL OF MODERN OPTICS, 2017, 64 (21) :2273-2280
[10]  
Iqbal M. S., 2022, INT J MOD PHYS B, V37