A novel intrusion detection model for the CAN bus packet of in-vehicle network based on attention mechanism and autoencoder

被引:23
|
作者
Wei, Pengcheng [1 ]
Wang, Bo [2 ]
Dai, Xiaojun [2 ]
Li, Li [3 ]
He, Fangcheng [4 ]
机构
[1] Chongqing Univ Educ, Sch Math & Informat Engn, Chongqing, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Automat, Chongqing, Peoples R China
[3] Chongqing Energy Ind Technician Coll, Dept Modern Serv, Chongqing, Peoples R China
[4] Chongqing Univ Educ, Coll Foreign Languages Literature, Chongqing, Peoples R China
关键词
Controller area network bus packet; In -vehicle network; Attention mechanism; Autoencoder;
D O I
10.1016/j.dcan.2022.04.021
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The attacks on in-vehicle Controller Area Network (CAN) bus messages severely disrupt normal communication between vehicles. Therefore, researches on intrusion detection models for CAN have positive business value for vehicle security, and the intrusion detection technology for CAN bus messages can effectively protect the invehicle network from unlawful attacks. Previous machine learning-based models are unable to effectively identify intrusive abnormal messages due to their inherent shortcomings. Hence, to address the shortcomings of the previous machine learning-based intrusion detection technique, we propose a novel method using Attention Mechanism and AutoEncoder for Intrusion Detection (AMAEID). The AMAEID model first converts the raw hexadecimal message data into binary format to obtain better input. Then the AMAEID model encodes and decodes the binary message data using a multi-layer denoising autoencoder model to obtain a hidden feature representation that can represent the potential features behind the message data at a deeper level. Finally, the AMAEID model uses the attention mechanism and the fully connected layer network to infer whether the message is an abnormal message or not. The experimental results with three evaluation metrics on a real in-vehicle CAN bus message dataset outperform some traditional machine learning algorithms, demonstrating the effectiveness of the AMAEID model.
引用
收藏
页码:14 / 21
页数:8
相关论文
共 50 条
  • [41] Intrusion Detection on the In-Vehicle Network Using Machine Learning
    Sharmin, Shaila
    Mansor, Hafizah
    2021 3RD INTERNATIONAL CYBER RESILIENCE CONFERENCE (CRC), 2021, : 26 - 31
  • [42] Intrusion Detecting System Based on Temporal Convolutional Network for In-Vehicle CAN Networks
    Shi, Dongxian
    Xu, Ming
    Wu, Ting
    Kou, Liang
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [43] Blockchain integration for in-vehicle CAN bus intrusion detection systems with ISO/SAE 21434 compliant reporting
    Andreica, Tudor
    Musuroi, Adrian
    Anistoroaei, Alfred
    Jichici, Camil
    Groza, Bogdan
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [44] Long Short-Term Memory-based Intrusion Detection System for In-Vehicle Controller Area Network Bus
    Hossain, Md Delwar
    Inoue, Hiroyuki
    Ochiai, Hideya
    Fall, Doudou
    Kadobayashi, Youki
    2020 IEEE 44TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2020), 2020, : 10 - 17
  • [45] In-Vehicle Network Intrusion Detection System Using CAN Frame-Aware Features
    Jeong, Yeonseon
    Kim, Hyunghoon
    Lee, Seyoung
    Choi, Wonsuk
    Lee, Dong Hoon
    Jo, Hyo Jin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 3843 - 3853
  • [46] T-Shaped CAN Feature Integration With Lightweight Deep Learning Model for In-Vehicle Network Intrusion Detection
    Huan, Sha
    Zhang, Xiaoyi
    Shang, Wenli
    Cao, Haitao
    Li, Heng
    Yang, Yuanjia
    Liu, Wenbai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (12) : 21183 - 21196
  • [47] CANBERT: A Language-based Intrusion Detection Model for In-vehicle Networks
    Nwafor, Ebelechukwu
    Olufowobi, Habeeb
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 294 - 299
  • [48] Anomaly Detection for In-Vehicle Network Using CNN-LSTM With Attention Mechanism
    Sun, Heng
    Chen, Miaomiao
    Weng, Jian
    Liu, Zhiquan
    Geng, Guanggang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (10) : 10880 - 10893
  • [49] Sustainable and lightweight domain-based intrusion detection system for in-vehicle network
    Kristianto, Edy
    Lin, Po -Ching
    Hwang, Ren-Hung
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2024, 41
  • [50] Many-Objective Optimization Based Intrusion Detection for In-Vehicle Network Security
    Zhang, Jiangjiang
    Gong, Bei
    Waqas, Muhammad
    Tu, Shanshan
    Chen, Sheng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (12) : 15051 - 15065