Multi-Stage Visual Tracking With Siamese Anchor-Free Proposal Network

被引:14
作者
Han, Guang [1 ]
Su, Jinpeng [1 ]
Liu, Yaoming [1 ]
Zhao, Yuqiu [2 ]
Kwong, Sam [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Engn Res Ctr Wideband Wireless Commun Technol, Minist Educ, Nanjing 210003, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Design Art & Media, Nanjing 210094, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
关键词
Target tracking; Feature extraction; Object tracking; Task analysis; Interference; Deep learning; Training; Anchor-free; feature purification; object tracking; siamese network; OBJECT TRACKING;
D O I
10.1109/TMM.2021.3127357
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The austere challenge of visual object tracking is to find the target to be tracked in various noise interference and obtain its accurate bounding box coordinates. Recently, the object tracking technology based on the Siamese network has made great breakthroughs, and more and more Siamese network trackers have been proposed with superior performance. They still have some shortcomings. To this end, a new Multi-Stage visual tracking algorithm with Siamese Anchor-Free Proposal Network (MS-SiamAFPN) is proposed in this paper. The algorithm is a three-stage Siamese network tracker composed of Feature Extraction and Fusion (FEF) sub-network, Classification and Regression (CR) sub-network, Validation and Regression (VR) sub-network in series. Firstly, the Anchor-Free Proposal Network (AFPN) module is designed in the CR stage, which can make full use of positive and negative samples for training while reducing neural network parameters. Secondly, aim to achieve better robustness and recognizability in the VR stage, on the one hand, a novel Feature Purification (FP) module is designed, which can automatically select the important channels, and extract the features of irregular regions on the input fusion features, so as to strengthen the representation ability of image features. On the other hand, the target recognition and position regression are regarded as different processing tasks, and the recognition score and position fine-tuning of candidate targets are obtained by newly designing the Dual-Branch Network (DBN) structure, thereby avoiding feature ambiguity. Due to the synergy of the above these innovations, MS-SiamAFPN has obtained a large performance improvement, and achieved SOTA performance in multiple public dataset benchmarks.
引用
收藏
页码:430 / 442
页数:13
相关论文
共 50 条
  • [1] An Anchor-Free Siamese Network with Multi-Template Update for Object Tracking
    Yuan, Tongtong
    Yang, Wenzhu
    Li, Qian
    Wang, Yuxia
    ELECTRONICS, 2021, 10 (09)
  • [2] Anchor-free Siamese Network Based on Visual Tracking
    Guo, Shaozhe
    Li, Yong
    Chen, Xuyang
    Zhang, Youshan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3137 - 3148
  • [3] AN ANCHOR-FREE SIAMESE TARGET TRACKING NETWORK FOR HYPERSPECTRAL VIDEO
    Liu, Zhenqi
    Wang, Xinyu
    Shu, Meng
    Li, Guanzhong
    Sun, Chen
    Liu, Ziying
    Zhong, Yanfei
    2021 11TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2021,
  • [4] Cooperative Use of Recurrent Neural Network and Siamese Region Proposal Network for Robust Visual Tracking
    Zhao, Xuechen
    Liu, Yaoming
    Han, Guang
    IEEE ACCESS, 2021, 9 : 57704 - 57715
  • [5] Visual Tracking With Siamese Network Based on Fast Attention Network
    Qin, Lin
    Yang, Yang
    Huang, Dandan
    Zhu, Naibo
    Yang, Han
    Xu, Zhisong
    IEEE ACCESS, 2022, 10 : 35632 - 35642
  • [6] A ConvNext-Based and Feature Enhancement Anchor-Free Siamese Network for Visual Tracking
    Xu, Qiguo
    Deng, Honggui
    Zhang, Zeyu
    Liu, Yang
    Ruan, Xusheng
    Liu, Gang
    ELECTRONICS, 2022, 11 (15)
  • [7] Fully Conventional Anchor-Free Siamese Networks for Object Tracking
    Han, Guang
    Du, Hua
    Liu, Jixin
    Sun, Ning
    Li, Xiaofei
    IEEE ACCESS, 2019, 7 : 123934 - 123943
  • [8] Dual attention Siamese network with anchor free for visual tracking
    Guo W.
    Liang B.-W.
    Ding X.-M.
    Kongzhi yu Juece/Control and Decision, 2024, 39 (02): : 633 - 640
  • [9] Learning Deep Lucas-Kanade Siamese Network for Visual Tracking
    Yao, Siyuan
    Han, Xiaoguang
    Zhang, Hua
    Wang, Xiao
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4814 - 4827
  • [10] Visual Object Tracking by Hierarchical Attention Siamese Network
    Shen, Jianbing
    Tang, Xin
    Dong, Xingping
    Shao, Ling
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3068 - 3080