Multi-Scale Fully Convolutional Network-Based Semantic Segmentation for Mobile Robot Navigation

被引:27
|
作者
Dang, Thai-Viet [1 ]
Bui, Ngoc-Tam [2 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Mech Engn, Mechatron Dept, Hanoi 10000, Vietnam
[2] Shibaura Inst Technol, Tokyo 1358548, Japan
关键词
computer vision; fully convolutional networks; mobile robot; navigation; obstacle avoidance; semantic segmentation;
D O I
10.3390/electronics12030533
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In computer vision and mobile robotics, autonomous navigation is crucial. It enables the robot to navigate its environment, which consists primarily of obstacles and moving objects. Robot navigation employing impediment detections, such as walls and pillars, is not only essential but also challenging due to real-world complications. This study provides a real-time solution to the problem of obtaining hallway scenes from an exclusive image. The authors predict a dense scene using a multi-scale fully convolutional network (FCN). The output is an image with pixel-by-pixel predictions that can be used for various navigation strategies. In addition, a method for comparing the computational cost and precision of various FCN architectures using VGG-16 is introduced. The binary semantic segmentation and optimal obstacle avoidance navigation of autonomous mobile robots are two areas in which our method outperforms the methods of competing works. The authors successfully apply perspective correction to the segmented image in order to construct the frontal view of the general area, which identifies the available moving area. The optimal obstacle avoidance strategy is comprised primarily of collision-free path planning, reasonable processing time, and smooth steering with low steering angle changes.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Multi-Scale Retinal Vessel Segmentation Based on Fully Convolutional Neural Network
    Zheng Tingyue
    Tang Chen
    Lei Zhenkun
    ACTA OPTICA SINICA, 2019, 39 (02)
  • [2] Multi-Scale Convolutional Features Network for Semantic Segmentation in Indoor Scenes
    Wang, Yanran
    Chen, Qingliang
    Chen, Shilang
    Wu, Junjun
    IEEE ACCESS, 2020, 8 : 89575 - 89583
  • [3] Multi-scale Convolutional Neural Network for SAR Image Semantic Segmentation
    Duan, Yiping
    Tao, Xiaoming
    Han, Chaoyi
    Qin, Xiaowei
    Lu, Jianhua
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [4] Fully Convolutional Network-Based Self-Supervised Learning for Semantic Segmentation
    Yang, Zhengeng
    Yu, Hongshan
    He, Yong
    Sun, Wei
    Mao, Zhi-Hong
    Mian, Ajmal
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 132 - 142
  • [5] Semantic image segmentation using fully convolutional neural networks with multi-scale images and multi-scale dilated convolutions
    Duc My Vo
    Sang-Woong Lee
    Multimedia Tools and Applications, 2018, 77 : 18689 - 18707
  • [6] Semantic image segmentation using fully convolutional neural networks with multi-scale images and multi-scale dilated convolutions
    Duc My Vo
    Lee, Sang-Woong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (14) : 18689 - 18707
  • [7] Convolutional Neural Network-Based Multi-scale Semantic Segmentation for Two-Dimensional Panoramic X-Rays of Teeth
    Wang, Qixuan
    Zhao, Yangzheng
    Zhang, Zhuofan
    SEMI-SUPERVISED TOOTH SEGMENTATION, SEMITOOTHSEG 2023, 2025, 14623 : 1 - 13
  • [8] A JOINT MULTI-SCALE CONVOLUTIONAL NETWORK FOR FULLY AUTOMATIC SEGMENTATION OF THE LEFT VENTRICLE
    Tong, Qianqian
    Yuan, Zhiyong
    Liao, Xiangyun
    Zheng, Mianlun
    Zhu, Weixu
    Zhang, Guian
    Ning, Munan
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3110 - 3114
  • [9] Segmentation and Multi-Scale Convolutional Neural Network-Based Classification of Airborne Laser Scanner Data
    Yang, Zhishuang
    Tan, Bo
    Pei, Huikun
    Jiang, Wanshou
    SENSORS, 2018, 18 (10)
  • [10] Multi-scale and multi-path cascaded convolutional network for semantic segmentation of colorectal polyps
    Manan, Malik Abdul
    Feng, Jinchao
    Yaqub, Muhammad
    Ahmed, Shahzad
    Imran, Syed Muhammad Ali
    Chuhan, Imran Shabir
    Khan, Haroon Ahmed
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 105 : 341 - 359