Hydrogen protection using CrN coatings: Experimental and theoretical study

被引:6
作者
Fite, S. [1 ]
Zukerman, I. [2 ]
Shabat, A. Ben [2 ]
Barzilai, S. [2 ]
机构
[1] Israel Atom Energy Commiss, POB 7061, Tel Aviv, Israel
[2] Nucl Res Ctr Negev, Dept Chem, POB 9001, Beer Sheva, Israel
关键词
Hydrogen damage; CrN coatings; Hydrogen protection; Density functional theory; EMBRITTLEMENT; CORROSION; STRESS;
D O I
10.1016/j.surfin.2023.102629
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Preventing hydrogen damage is an important issue in materials design. To prevent such damage, CrN coating is investigated as a very promising candidate for hydrogen damage protection. In this study, the theoretical analysis of hydrogen adsorption on CrN surfaces was studied. It was found that most CrN surfaces are inert to hydrogen and do not adsorb it. This finding is suggested to explain the hydrogen protection caused by these coatings. To demonstrate these abilities of CrN coatings, we used the Pulsed-DC magnetron sputtering method to produce CrN layers on gadolinium substrates. The coated samples were exposed to hydrogen, characterized by SEM, XRD, and GD-OES, and show no hydrogen damage, were the uncoated ones exhibited a massive hydrogen attack.
引用
收藏
页数:7
相关论文
共 28 条
  • [1] The effects of vacancies and surface hydroxyls on the interactions of hydrogen with rare earth oxides - DFT calculations on gadolinium oxide
    Barzilai, S.
    Mintz, M. H.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 740 : 926 - 934
  • [2] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [3] Texture development in polycrystalline CrN coatings: the role of growth conditions and a Cr interlayer
    Daniel, R.
    Martinschitz, K. J.
    Keckes, J.
    Mitterer, C.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (07)
  • [4] Darken L.S., 1949, CORROSION-US, V5, P1, DOI DOI 10.5006/0010-9312-5.1.1
  • [5] Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4
    Daub, K.
    Van Nieuwenhove, R.
    Nordin, H.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2015, 467 : 260 - 270
  • [6] Prevention of Hydrogen Embrittlement in Steels
    Dharamshi, Harshad Kumar
    Bhadeshia, Hansraj
    [J]. ISIJ INTERNATIONAL, 2016, 56 (01) : 24 - 36
  • [7] Hydrogen embrittlement in different materials: A review
    Dwivedi, Sandeep Kumar
    Vishwakarma, Manish
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (46) : 21603 - 21616
  • [8] QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
    Giannozzi, Paolo
    Baroni, Stefano
    Bonini, Nicola
    Calandra, Matteo
    Car, Roberto
    Cavazzoni, Carlo
    Ceresoli, Davide
    Chiarotti, Guido L.
    Cococcioni, Matteo
    Dabo, Ismaila
    Dal Corso, Andrea
    de Gironcoli, Stefano
    Fabris, Stefano
    Fratesi, Guido
    Gebauer, Ralph
    Gerstmann, Uwe
    Gougoussis, Christos
    Kokalj, Anton
    Lazzeri, Michele
    Martin-Samos, Layla
    Marzari, Nicola
    Mauri, Francesco
    Mazzarello, Riccardo
    Paolini, Stefano
    Pasquarello, Alfredo
    Paulatto, Lorenzo
    Sbraccia, Carlo
    Scandolo, Sandro
    Sclauzero, Gabriele
    Seitsonen, Ari P.
    Smogunov, Alexander
    Umari, Paolo
    Wentzcovitch, Renata M.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
  • [9] Electronic structure of the transition metal nitrides TiN, VN, and CrN
    Harrison, JF
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (09) : 3513 - 3519
  • [10] Jones R.H., 2007, MAT HYDROGEN EC