On a System of Coupled Langevin Equations in the Frame of Generalized Liouville-Caputo Fractional Derivatives

被引:1
作者
Salman, Hassan J. Al [1 ]
Awadalla, Muath [1 ]
Subramanian, Muthaiah [2 ]
Abuasbeh, Kinda [1 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, Al Hasa 319832, Saudi Arabia
[2] KPR Inst Engn & Technol, Dept Math, Coimbatore 641407, India
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
coupled system; Langevin equations; Katugampola integrals; generalized Liouville-Caputo derivatives; stability; existence; fixed point; DIFFERENTIAL-EQUATIONS; RIEMANN-LIOUVILLE; EXISTENCE; ORDER;
D O I
10.3390/sym15010204
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the existence and uniqueness results for coupled Langevin differential equations of fractional order with Katugampola integral boundary conditions involving generalized Liouville-Caputo fractional derivatives. Furthermore, we discuss Ulam-Hyers stability in the context of the problem at hand. The results are shown with examples. Results are asymmetric when a generalised Liouville-Caputo fractional derivative (rho) parameter is changed. With its novel results, this paper makes a significant contribution to the relevant literature.
引用
收藏
页数:18
相关论文
共 37 条
[1]   The Langevin Equation in Terms of Generalized Liouville-Caputo Derivatives with Nonlocal Boundary Conditions Involving a Generalized Fractional Integral [J].
Ahmad, Bashir ;
Alghanmi, Madeaha ;
Alsaedi, Ahmed ;
Srivastava, Hari M. ;
Ntouyas, Sotiris K. .
MATHEMATICS, 2019, 7 (06)
[2]   On a nonlocal integral boundary value problem of nonlinear Langevin equation with different fractional orders [J].
Ahmad, Bashir ;
Alsaedi, Ahmed ;
Salem, Sara .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[3]  
Ahmad B, 2013, J NONLINEAR CONVEX A, V14, P437
[4]   A study of nonlinear Langevin equation involving two fractional orders in different intervals [J].
Ahmad, Bashir ;
Nieto, Juan J. ;
Alsaedi, Ahmed ;
El-Shahed, Moustafa .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) :599-606
[5]   Generalized Liouville-Caputo Fractional Differential Equations and Inclusions with Nonlocal Generalized Fractional Integral and Multipoint Boundary Conditions [J].
Alsaedi, Ahmed ;
Alghanmi, Madeaha ;
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
SYMMETRY-BASEL, 2018, 10 (12)
[6]   On the Generalized Liouville-Caputo Type Fractional Differential Equations Supplemented with Katugampola Integral Boundary Conditions [J].
Awadalla, Muath ;
Subramanian, Muthaiah ;
Abuasbeh, Kinda ;
Manigandan, Murugesan .
SYMMETRY-BASEL, 2022, 14 (11)
[7]   Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdelyi-Kober integral conditions [J].
Baleanu, Dumitru ;
Hemalatha, S. ;
Duraisamy, P. ;
Pandiyan, P. ;
Muthaiah, Subramanian .
AIMS MATHEMATICS, 2021, 6 (12) :13004-13023
[8]  
BITSADZE AV, 1969, DOKL AKAD NAUK SSSR+, V185, P739
[9]  
Butt S.I., 2020, Turk. J. Sci, V5, P140
[10]   Numerical approximation of one model of bacterial self-organization [J].
Ciegis, Raimondas ;
Bugajev, Andrej .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2012, 17 (03) :253-270