Improved model quality assessment using sequence and structural information by enhanced deep neural networks

被引:18
作者
Liu, Jun [1 ]
Zhao, Kailong [1 ]
Zhang, Guijun [1 ]
机构
[1] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Peoples R China
关键词
model quality assessment; multiple sequence alignment; homologous template; deep learning; PROTEIN; PREDICTION; SINGLE; SERVER;
D O I
10.1093/bib/bbac507
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Protein model quality assessment plays an important role in protein structure prediction, protein design and drug discovery. In this work, DeepUMQA2, a substantially improved version of DeepUMQA for protein model quality assessment, is proposed. First, sequence features containing protein co -evolution information and structural features reflecting family information are extracted to complement model -dependent features. Second, a novel backbone network based on triangular multiplication update and axial attention mechanism is designed to enhance information exchange between inter-residue pairs. On CASP13 and CASP14 datasets, the performance of DeepUMQA2 increases by 20.5 and 20.4% compared with DeepUMQA, respectively (measured by top 1 loss). Moreover, on the three-month CAMEO dataset (11 March to 04 June 2022), DeepUMQA2 outperforms DeepUMQA by 15.5% (measured by local AUC0,0.2) and ranks first among all competing server methods in CAMEO blind test. Experimental results show that DeepUMQA2 outperforms state-of-the-art model quality assessment methods, such as ProQ3D-LDDT, ModFOLD8, and DeepAccNet and DeepUMQA2 can select more suitable best models than state-of-the-art protein structure methods, such as AlphaFold2, RoseTTAFold and I-TASSER, provided themselves.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[2]   GraphQA: protein model quality assessment using graph convolutional networks [J].
Baldassarre, Federico ;
Hurtado, David Menendez ;
Elofsson, Arne ;
Azizpour, Hossein .
BIOINFORMATICS, 2021, 37 (03) :360-366
[3]   QMEAN: A comprehensive scoring function for model quality assessment [J].
Benkert, Pascal ;
Tosatto, Silvio C. E. ;
Schomburg, Dietmar .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 71 (01) :261-277
[4]   QAcon: single model quality assessment using protein structural and contact information with machine learning techniques [J].
Cao, Renzhi ;
Adhikari, Badri ;
Bhattacharya, Debswapna ;
Sun, Miao ;
Hou, Jie ;
Cheng, Jianlin .
BIOINFORMATICS, 2017, 33 (04) :586-588
[5]   Deep convolutional networks for quality assessment of protein folds [J].
Derevyanko, Georgy ;
Grudinin, Sergei ;
Bengio, Yoshua ;
Lamoureux, Guillaume .
BIOINFORMATICS, 2018, 34 (23) :4046-4053
[6]   DeepUMQA: ultrafast shape recognition-based protein model quality assessment using deep learning [J].
Guo, Sai-Sai ;
Liu, Jun ;
Zhou, Xiao-Gen ;
Zhang, Gui-Jun .
BIOINFORMATICS, 2022, 38 (07) :1895-1903
[7]   Improved protein structure refinement guided by deep learning based accuracy estimation [J].
Hiranuma, Naozumi ;
Park, Hahnbeom ;
Baek, Minkyung ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Baker, David .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]  
Hurtado D.M., 2018, ARXIV
[9]   CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction [J].
Ju, Fusong ;
Zhu, Jianwei ;
Shao, Bin ;
Kong, Lupeng ;
Liu, Tie-Yan ;
Zheng, Wei-Mou ;
Bu, Dongbo .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   Highly accurate protein structure prediction with AlphaFold [J].
Jumper, John ;
Evans, Richard ;
Pritzel, Alexander ;
Green, Tim ;
Figurnov, Michael ;
Ronneberger, Olaf ;
Tunyasuvunakool, Kathryn ;
Bates, Russ ;
Zidek, Augustin ;
Potapenko, Anna ;
Bridgland, Alex ;
Meyer, Clemens ;
Kohl, Simon A. A. ;
Ballard, Andrew J. ;
Cowie, Andrew ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Jain, Rishub ;
Adler, Jonas ;
Back, Trevor ;
Petersen, Stig ;
Reiman, David ;
Clancy, Ellen ;
Zielinski, Michal ;
Steinegger, Martin ;
Pacholska, Michalina ;
Berghammer, Tamas ;
Bodenstein, Sebastian ;
Silver, David ;
Vinyals, Oriol ;
Senior, Andrew W. ;
Kavukcuoglu, Koray ;
Kohli, Pushmeet ;
Hassabis, Demis .
NATURE, 2021, 596 (7873) :583-+