Benchmarking long-read RNA-sequencing analysis tools using in silico mixtures

被引:22
|
作者
Dong, Xueyi [1 ,2 ]
Du, Mei R. M. [1 ]
Gouil, Quentin [1 ,2 ]
Tian, Luyi [1 ,2 ,4 ]
Jabbari, Jafar S. [1 ,2 ]
Bowden, Rory [1 ,2 ]
Baldoni, Pedro L. [1 ,2 ]
Chen, Yunshun [1 ,2 ]
Smyth, Gordon K. [1 ,3 ]
Amarasinghe, Shanika L. [1 ,2 ,5 ]
Law, Charity W. [1 ,2 ]
Ritchie, Matthew E. [1 ,2 ]
机构
[1] Walter & Eliza Hall Inst Med Res, Parkville, Vic, Australia
[2] Univ Melbourne, Dept Med Biol, Parkville, Vic, Australia
[3] Univ Melbourne, Sch Math & Stat, Parkville, Vic, Australia
[4] Guangzhou Natl Lab, Guangzhou, Peoples R China
[5] Monash Univ, Australian Regenerat Med Inst, Clayton, Vic, Australia
基金
英国医学研究理事会;
关键词
QUALITY-CONTROL; R PACKAGE; QUANTIFICATION;
D O I
10.1038/s41592-023-02026-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The lack of benchmark data sets with inbuilt ground-truth makes it challenging to compare the performance of existing long-read isoform detection and differential expression analysis workflows. Here, we present a benchmark experiment using two human lung adenocarcinoma cell lines that were each profiled in triplicate together with synthetic, spliced, spike-in RNAs (sequins). Samples were deeply sequenced on both Illumina short-read and Oxford Nanopore Technologies long-read platforms. Alongside the ground-truth available via the sequins, we created in silico mixture samples to allow performance assessment in the absence of true positives or true negatives. Our results show that StringTie2 and bambu outperformed other tools from the six isoform detection tools tested, DESeq2, edgeR and limma-voom were best among the five differential transcript expression tools tested and there was no clear front-runner for performing differential transcript usage analysis between the five tools compared, which suggests further methods development is needed for this application.
引用
收藏
页码:1810 / 1821
页数:18
相关论文
共 50 条
  • [1] Benchmarking long-read RNA-sequencing analysis tools using in silico mixtures
    Xueyi Dong
    Mei R. M. Du
    Quentin Gouil
    Luyi Tian
    Jafar S. Jabbari
    Rory Bowden
    Pedro L. Baldoni
    Yunshun Chen
    Gordon K. Smyth
    Shanika L. Amarasinghe
    Charity W. Law
    Matthew E. Ritchie
    Nature Methods, 2023, 20 : 1810 - 1821
  • [3] Evaluating long-read RNA-sequencing analysis tools with in silico mixtures
    Dong, Xueyi
    Ritchie, Matthew E.
    NATURE METHODS, 2023, 20 (11) : 1643 - 1644
  • [4] Dual Platform Long-Read RNA-Sequencing Dataset of the Human Cytomegalovirus Lytic Transcriptome
    Balazs, Zsolt
    Tombacz, Dora
    Szucs, Attila
    Snyder, Michael
    Boldogkoi, Zsolt
    FRONTIERS IN GENETICS, 2018, 9
  • [5] The long and the short of it: unlocking nanopore long-read RNA sequencing data with short-read differential expression analysis tools
    Dong, Xueyi
    Tian, Luyi
    Gouil, Quentin
    Kariyawasam, Hasaru
    Su, Shian
    De Paoli-Iseppi, Ricardo
    Prawer, Yair David Joseph
    Clark, Michael B.
    Breslin, Kelsey
    Iminitoff, Megan
    Blewitt, Marnie E.
    Law, Charity W.
    Ritchie, Matthew E.
    NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (02)
  • [6] Systematic benchmarking of tools for structural variation detection using short- and long-read sequencing data in pigs
    He, Sang
    Song, Bangmin
    Tang, Yueting
    Qu, Xiaolu
    Li, Xingzheng
    Yang, Xintong
    Bao, Qi
    Fang, Lingzhao
    Jiang, Jicai
    Tang, Zhonglin
    Yi, Guoqiang
    ISCIENCE, 2025, 28 (03)
  • [7] Genome sequencing using long-read sequencing
    McEwen, Juan Guillermo
    Gomez, Oscar Mauricio
    REVISTA DE LA ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS FISICAS Y NATURALES, 2023, 47 (183): : 439 - 444
  • [8] Comparative assessment of long-read error correction software applied to Nanopore RNA-sequencing data
    Lima, Leandro
    Marchet, Camille
    Caboche, Segolene
    Da Silva, Corinne
    Istace, Benjamin
    Aury, Jean-Marc
    Touzet, Helene
    Chikhi, Rayan
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1164 - 1181
  • [9] Benchmarking of long-read sequencing, assemblers and polishers for yeast genome
    Zhang, Xue
    Liu, Chen-Guang
    Yang, Shi-Hui
    Wang, Xia
    Bai, Feng-Wu
    Wang, Zhuo
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (03)
  • [10] long-read-tools.org: an interactive catalogue of analysis methods for long-read sequencing data
    Amarasinghe, Shanika L.
    Ritchie, Matthew E.
    Gouil, Quentin
    GIGASCIENCE, 2021, 10 (02):