On Bayesian predictive density estimation for skew-normal distributions

被引:0
作者
Kortbi, Othmane [1 ]
机构
[1] UAE Univ, Dept Stat & Business Analyt, Al Ain, U Arab Emirates
关键词
Skew-normal distributions; Predictive densities; Minimax estimators; Admissibility; Kullback-Leibler loss; Bayes estimators;
D O I
10.1007/s00184-024-00946-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with prediction for skew-normal models, and more specifically the Bayes estimation of a predictive density for Y mu similar to SNp(mu,vyIp,lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y \left. \right| \mu \sim {\mathcal {S}} {\mathcal {N}}_p (\mu , v_y I_p, \lambda )$$\end{document} under Kullback-Leibler loss, based on X mu similar to SNp(mu,vxIp,lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \left. \right| \mu \sim {\mathcal {S}} {\mathcal {N}}_p (\mu , v_x I_p, \lambda )$$\end{document} with known dependence and skewness parameters. We obtain representations for Bayes predictive densities, including the minimum risk equivariant predictive density p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} which is a Bayes predictive density with respect to the noninformative prior pi 0 equivalent to 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _0\equiv 1$$\end{document}. George et al. (Ann Stat 34:78-91, 2006) used the parallel between the problem of point estimation and the problem of estimation of predictive densities to establish a connection between the difference of risks of the two problems. The development of similar connection, allows us to determine sufficient conditions of dominance over p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} and of minimaxity. First, we show that p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} is a minimax predictive density under KL risk for the skew-normal model. After this, for dimensions p >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 3$$\end{document}, we obtain classes of Bayesian minimax densities that improve p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} under KL loss, for the subclass of skew-normal distributions with small value of skewness parameter. Moreover, for dimensions p >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 4$$\end{document}, we obtain classes of Bayesian minimax densities that improve p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} under KL loss, for the whole class of skew-normal distributions. Examples of proper priors, including generalized student priors, generating Bayesian minimax densities that improve p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} under KL loss, were constructed when p >= 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 5$$\end{document}. This findings represent an extension of Liang and Barron (IEEE Trans Inf Theory 50(11):2708-2726, 2004), George et al. (Ann Stat 34:78-91, 2006) and Komaki (Biometrika 88(3):859-864, 2001) results to a subclass of asymmetrical distributions.
引用
收藏
页数:14
相关论文
共 14 条
[1]   A Selective Overview of Skew-Elliptical and Related Distributions and of Their Applications [J].
Adcock, Chris ;
Azzalini, Adelchi .
SYMMETRY-BASEL, 2020, 12 (01)
[2]  
AITCHISON J, 1975, BIOMETRIKA, V62, P547, DOI 10.1093/biomet/62.3.547
[3]   Statistical applications of the multivariate skew normal distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :579-602
[4]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726
[5]  
Berger J. O., 1985, Statistical decision theory and Bayesian analysis, DOI 10.1007/978-1-4757-4286-2
[6]   Admissible predictive density estimation [J].
Brown, Lawrence D. ;
George, Edward I. ;
Xu, Xinyi .
ANNALS OF STATISTICS, 2008, 36 (03) :1156-1170
[7]  
Fourdrinier D, 1998, ANN STAT, V26, P660
[8]   Improved minimax predictive densities under Kullback-Leibler loss [J].
George, Edward I. ;
Liang, Feng ;
Xu, Xinyi .
ANNALS OF STATISTICS, 2006, 34 (01) :78-91
[9]   A shrinkage predictive distribution for multivariate Normal observables [J].
Komaki, F .
BIOMETRIKA, 2001, 88 (03) :859-864
[10]  
Lehmann E. L., 2006, THEORY POINT ESTIMAT