An Exploitation-Enhanced Bayesian Optimization Algorithm for High-Dimensional Expensive Problems

被引:0
|
作者
Gui, Yuqian [1 ]
Zhan, Dawei [1 ]
Li, Tianrui [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III | 2023年 / 14256卷
关键词
Expensive optimization; Bayesian optimization; Expected improvement; Local model; EFFICIENT GLOBAL OPTIMIZATION;
D O I
10.1007/978-3-031-44213-1_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Bayesian optimization (BO) algorithm is widely used to solve expensive optimization problems. However, when dealing with high-dimensional problems, the accuracy of the global Gaussian process (GP) model is often inadequate due to the limited number of training points. As a result, the search based on the expected improvement criterion can lead to misguided exploration. To address this issue, we propose an exploitation-enhanced Bayesian optimization (EE-BO) algorithm. Our approach incorporates a local GP model built around the evaluated solution from the previous iteration, which is used to find the next infill solution if the current selection from the global GP model is not an improvement. The inclusion of the local model mitigates the impact of inaccurate models and enhances the algorithm's ability to perform local searches when the global model struggles to find better solutions. Our numerical experiments show that the proposed EE-BO algorithm outperforms the vanilla BO algorithm and achieves competitive performance compared to five state-of-the-art algorithms.
引用
收藏
页码:295 / 306
页数:12
相关论文
共 50 条
  • [1] An exploitation-enhanced multi-objective efficient global optimization algorithm for expensive aerodynamic shape optimizations
    Deng, Feng
    Qin, Ning
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2022, 236 (07) : 1408 - 1421
  • [2] A parallel constrained Bayesian optimization algorithm for high-dimensional expensive problems and its application in optimization of VRB structures
    Duan, Libin
    Xue, Kaiwen
    Jiang, Tao
    Du, Zhanpeng
    Xu, Zheng
    Shi, Lei
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2024, 67 (04)
  • [3] Scalable Bayesian optimization based on exploitation-enhanced sparse Gaussian process
    Aydogdu, Ibrahim
    Wang, Yan
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2024, 67 (12)
  • [4] A Surrogate-Assisted Differential Evolution Algorithm for High-Dimensional Expensive Optimization Problems
    Wang, Weizhong
    Liu, Hai-Lin
    Tan, Kay Chen
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (04) : 2685 - 2697
  • [5] A Surrogate-Assisted Multiswarm Optimization Algorithm for High-Dimensional Computationally Expensive Problems
    Li, Fan
    Cai, Xiwen
    Gao, Liang
    Shen, Weiming
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (03) : 1390 - 1402
  • [6] Evolutionary Optimization Methods for High-Dimensional Expensive Problems: A Survey
    Zhou, Mengchu
    Cui, Meiji
    Xu, Dian
    Zhu, Shuwei
    Zhao, Ziyan
    Abusorrah, Abdullah
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (05) : 1092 - 1105
  • [7] Expected coordinate improvement for high-dimensional Bayesian optimization
    Zhan, Dawei
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 91
  • [8] A radial basis function surrogate model assisted evolutionary algorithm for high-dimensional expensive optimization problems
    Chen, Guodong
    Zhang, Kai
    Xue, Xiaoming
    Zhang, Liming
    Yao, Chuanjin
    Wang, Jian
    Yao, Jun
    APPLIED SOFT COMPUTING, 2022, 116
  • [9] A Novel Evolutionary Sampling Assisted Optimization Method for High-Dimensional Expensive Problems
    Wang, Xinjing
    Wang, G. Gary
    Song, Baowei
    Wang, Peng
    Wang, Yang
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (05) : 815 - 827
  • [10] Bayesian optimization techniques for high-dimensional simulation-based transportation problems
    Tay, Timothy
    Osorio, Carolina
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2022, 164 : 210 - 243