Repurposing the mammalian RNA-binding protein Musashi-1 as an allosteric translation repressor in bacteria

被引:2
|
作者
Dolcemascolo, Roswitha [1 ,2 ]
Heras-Hernandez, Maria [1 ]
Goiriz, Lucas [1 ,3 ]
Montagud-Martinez, Roser [1 ,2 ]
Requena-Menendez, Alejandro [1 ]
Ruiz, Raul [1 ]
Perez-Rafols, Anna [4 ,5 ]
Higuera-Rodriguez, R. Anahi [6 ,7 ]
Perez-Ropero, Guillermo [8 ,9 ]
Vranken, Wim F. [10 ,11 ]
Martelli, Tommaso [4 ]
Kaiser, Wolfgang [6 ]
Buijs, Jos [8 ,12 ]
Rodrigo, Guillermo [1 ]
机构
[1] Univ Valencia, CSIC, Inst Integrat Syst Biol I2SysBio, Paterna, Spain
[2] Univ Politecn Valencia, Dept Biotechnol, Valencia, Spain
[3] Univ Politecn Valencia, Dept Appl Math, Valencia, Spain
[4] Giotto Biotech SRL, Sesto Fiorentino, Italy
[5] Univ Florence, Magnet Resonance Ctr CERM, Dept Chem Ugo Schiff, Consorzio Interuniv Risonanze Magnet Metalloprotei, Sesto Fiorentino, Italy
[6] Dynam Biosensors GmbH, Planegg, Germany
[7] Tech Univ Munich, Dept Phys, Garching, Germany
[8] Ridgeview Instruments AB, Uppsala, Sweden
[9] Uppsala Univ, Dept Chem, BMC, Uppsala, Sweden
[10] Vrije Univ Brussel, Struct Biol Brussels, Brussels, Belgium
[11] Vrije Univ Brussel, Univ Libre Bruxelles, Interuniv Inst Bioinformat Brussels, Brussels, Belgium
[12] Uppsala Univ, Dept Immunol Genet & Pathol, Uppsala, Sweden
来源
ELIFE | 2024年 / 12卷
基金
欧盟地平线“2020”;
关键词
binding kinetics; dynamic systems and modelling; genetic circuits; post-transcriptional regulation; RNA recognition motif; synthetic biology; E; coli; Mouse; ESCHERICHIA-COLI; GENE-EXPRESSION; INITIATION; EVOLUTION; PLATFORM; DESIGN; SYSTEM; MOTIF;
D O I
10.7554/eLife.91777
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The RNA recognition motif (RRM) is the most common RNA-binding protein domain identified in nature. However, RRM-containing proteins are only prevalent in eukaryotic phyla, in which they play central regulatory roles. Here, we engineered an orthogonal post-transcriptional control system of gene expression in the bacterium Escherichia coli with the mammalian RNA-binding protein Musashi-1, which is a stem cell marker with neurodevelopmental role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated transcriptionally and works as an allosteric translation repressor thanks to a specific interaction with the N-terminal coding region of a messenger RNA and its structural plasticity to respond to fatty acids. We fully characterized the genetic system at the population and single-cell levels showing a significant fold change in reporter expression, and the underlying molecular mechanism by assessing the in vitro binding kinetics and in vivo functionality of a series of RNA mutants. The dynamic response of the system was well recapitulated by a bottom-up mathematical model. Moreover, we applied the post-transcriptional mechanism engineered with Musashi-1 to specifically regulate a gene within an operon, implement combinatorial regulation, and reduce protein expression noise. This work illustrates how RRM-based regulation can be adapted to simple organisms, thereby adding a new regulatory layer in prokaryotes for translation control.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] The RNA-Binding Protein, Polypyrimidine Tract-Binding Protein 1 (PTBP1) Is a Key Regulator of CD4 T Cell Activation
    La Porta, James
    Matus-Nicodemos, Rodrigo
    Valentin-Acevedo, Anibal
    Covey, Lori R.
    PLOS ONE, 2016, 11 (08):
  • [22] Structural Characterization of the RNA-Binding Protein SERBP1 Reveals Intrinsic Disorder and Atypical RNA Binding Modes
    Baudin, Antoine
    Moreno-Romero, Alma K.
    Xu, Xiaoping
    Selig, Emily E.
    Penalva, Luiz O. F.
    Libich, David S.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [23] Diversity of RNA-Binding Proteins Modulating Post-Transcriptional Regulation of Protein Expression in the Maturing Mammalian Oocyte
    Christou-Kent, Marie
    Dhellemmes, Magali
    Lambert, Emeline
    Ray, Pierre F.
    Arnoult, Christophe
    CELLS, 2020, 9 (03)
  • [24] Remarkable sequence conservation of transcripts encoding amphibian and mammalian homologues of quaking, a KH domain RNA-binding protein
    Zorn, AM
    Grow, M
    Patterson, KD
    Ebersole, TA
    Chen, Q
    Artzt, K
    Krieg, PA
    GENE, 1997, 188 (02) : 199 - 206
  • [25] The viral nucleocapsid protein and the human RNA-binding protein Mex3A promote translation of the Andes orthohantavirus small mRNA
    Vera-Otarola, Jorge
    Castillo-Vargas, Estefania
    Angulo, Jenniffer
    Barriga, Francisco M.
    Batlle, Eduard
    Lopez-Lastra, Marcelo
    PLOS PATHOGENS, 2021, 17 (09)
  • [26] Positive feedback between RNA-binding protein HuD and transcription factor SATB1 promotes neurogenesis
    Wang, Feifei
    Tidei, Joseph J.
    Polich, Eric D.
    Gao, Yu
    Zhao, Huashan
    Perrone-Bizzozero, Nora I.
    Guo, Weixiang
    Zhao, Xinyu
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (36) : E4995 - E5004
  • [27] LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR
    Kim, Jiyoung
    Abdelmohsen, Kotb
    Yang, Xiaoling
    De, Supriyo
    Grammatikakis, Ioannis
    Noh, Ji Heon
    Gorospe, Myriam
    NUCLEIC ACIDS RESEARCH, 2016, 44 (05) : 2378 - 2392
  • [28] The RNA-binding protein La contributes to cell proliferation and CCND1 expression
    Sommer, G.
    Dittmann, J.
    Kuehnert, J.
    Reumann, K.
    Schwartz, P. E.
    Will, H.
    Coulter, B. L.
    Smith, M. T.
    Heise, T.
    ONCOGENE, 2011, 30 (04) : 434 - 444
  • [29] Identification of a signature motif in target mRNAs of RNA-binding protein AUF1
    Mazan-Mamczarz, Krystyna
    Kuwano, Yuki
    Zhan, Ming
    White, Elizabeth J.
    Martindale, Jennifer L.
    Lal, Ashish
    Gorospe, Myriam
    NUCLEIC ACIDS RESEARCH, 2009, 37 (01) : 204 - 214
  • [30] The RNA-binding protein Puf1 functions in the maintenance of gametocytes in Plasmodium falciparum
    Shrestha, Sony
    Li, Xiaolian
    Ning, Gang
    Miao, Jun
    Cui, Liwang
    JOURNAL OF CELL SCIENCE, 2016, 129 (16) : 3144 - 3152