机构:
MIT, Lab Informat & Decis Syst, Cambridge, MA USAMIT, Lab Informat & Decis Syst, Cambridge, MA USA
Berlinghieri, Renato
[1
]
Krajbich, Ian
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Dept Psychol, Columbus, OH 43210 USA
Ohio State Univ, Dept Econ, Columbus, OH 43210 USA
Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90095 USAMIT, Lab Informat & Decis Syst, Cambridge, MA USA
Krajbich, Ian
[2
,3
,4
]
Maccheroni, Fabio
论文数: 0引用数: 0
h-index: 0
机构:
Bocconi Univ, Dept Decis Sci, Milan, ItalyMIT, Lab Informat & Decis Syst, Cambridge, MA USA
Maccheroni, Fabio
[5
]
Marinacci, Massimo
论文数: 0引用数: 0
h-index: 0
机构:
Bocconi Univ, Dept Decis Sci, Milan, ItalyMIT, Lab Informat & Decis Syst, Cambridge, MA USA
Marinacci, Massimo
[5
]
Pirazzini, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Yale Univ, Dept Comp Sci, New Haven, CT USAMIT, Lab Informat & Decis Syst, Cambridge, MA USA
Pirazzini, Marco
[6
]
机构:
[1] MIT, Lab Informat & Decis Syst, Cambridge, MA USA
[2] Ohio State Univ, Dept Psychol, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Econ, Columbus, OH 43210 USA
[4] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90095 USA
The drift diffusion model (DDM) is a prominent account of how people make decisions. Many of these decisions involve comparing two alternatives based on differences of perceived stimulus magnitudes, such as economic values. Here, we propose a consistent estimator for the parameters of a DDM in such cases. This estimator allows us to derive decision thresholds, drift rates, and subjective percepts (i.e., utilities in economic choice) directly from the experimental data. This eliminates the need to measure these values separately or to assume specific functional forms for them. Our method also allows one to predict drift rates for comparisons that did not occur in the dataset. We apply the method to two datasets, one comparing probabilities of earning a fixed reward and one comparing objects of variable reward value. Our analysis indicates that both datasets conform well to the DDM. We find that utilities are linear in probability and slightly convex in reward.