Measuring utility with diffusion models

被引:0
作者
Berlinghieri, Renato [1 ]
Krajbich, Ian [2 ,3 ,4 ]
Maccheroni, Fabio [5 ]
Marinacci, Massimo [5 ]
Pirazzini, Marco [6 ]
机构
[1] MIT, Lab Informat & Decis Syst, Cambridge, MA USA
[2] Ohio State Univ, Dept Psychol, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Econ, Columbus, OH 43210 USA
[4] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90095 USA
[5] Bocconi Univ, Dept Decis Sci, Milan, Italy
[6] Yale Univ, Dept Comp Sci, New Haven, CT USA
基金
美国国家科学基金会;
关键词
SEQUENTIAL SAMPLING MODELS; DECISION-MAKING; RESPONSE-TIME; PROBABILITY; ACCURACY; CHOICE; SPEED;
D O I
10.1126/sciadv.adf1665
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The drift diffusion model (DDM) is a prominent account of how people make decisions. Many of these decisions involve comparing two alternatives based on differences of perceived stimulus magnitudes, such as economic values. Here, we propose a consistent estimator for the parameters of a DDM in such cases. This estimator allows us to derive decision thresholds, drift rates, and subjective percepts (i.e., utilities in economic choice) directly from the experimental data. This eliminates the need to measure these values separately or to assume specific functional forms for them. Our method also allows one to predict drift rates for comparisons that did not occur in the dataset. We apply the method to two datasets, one comparing probabilities of earning a fixed reward and one comparing objects of variable reward value. Our analysis indicates that both datasets conform well to the DDM. We find that utilities are linear in probability and slightly convex in reward.
引用
收藏
页数:10
相关论文
共 64 条
  • [1] Parameter-free elicitation of utility and probability weighting functions
    Abdellaoui, M
    [J]. MANAGEMENT SCIENCE, 2000, 46 (11) : 1497 - 1512
  • [2] Acz?l J., 1966, LECT FUNCTIONAL EQUA
  • [3] Time Will Tell: Recovering Preferences When Choices Are Noisy
    Alos-Ferrer, Carlos
    Fehr, Ernst
    Netzer, Nick
    [J]. JOURNAL OF POLITICAL ECONOMY, 2021, 129 (06) : 1828 - 1877
  • [4] Amount and time exert independent influences on intertemporal choice
    Amasino, Dianna R.
    Sullivan, Nicolette J.
    Kranton, Rachel E.
    Huettel, Scott A.
    [J]. NATURE HUMAN BEHAVIOUR, 2019, 3 (04) : 383 - 392
  • [5] A Behavioral Characterization of the Drift Diffusion Model and Its Multialternative Extension for Choice Under Time Pressure
    Baldassi, Carlo
    Cerreia-Vioglio, Simone
    Maccheroni, Fabio
    Marinacci, Massimo
    Pirazzini, Marco
    [J]. MANAGEMENT SCIENCE, 2020, 66 (11) : 5075 - 5093
  • [6] The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value
    Bartra, Oscar
    McGuire, Joseph T.
    Kable, Joseph W.
    [J]. NEUROIMAGE, 2013, 76 (01) : 412 - 427
  • [7] How the brain integrates costs and benefits during decision making
    Basten, Ulrike
    Biele, Guido
    Heekeren, Hauke R.
    Fiebach, Christian J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (50) : 21767 - 21772
  • [8] Bhui R., 2019, COMPUTATIONAL BRAIN, V2, P85, DOI DOI 10.1007/S42113-019-0025-9
  • [9] The neural basis of the speed-accuracy tradeoff
    Bogacz, Rafal
    Wagenmakers, Eric-Jan
    Forstmann, Birte U.
    Nieuwenhuis, Sander
    [J]. TRENDS IN NEUROSCIENCES, 2010, 33 (01) : 10 - 16
  • [10] Cognitive and Neural Bases of Multi-Attribute, Multi-Alternative, Value-based Decisions
    Busemeyer, Jerome R.
    Gluth, Sebastian
    Rieskamp, Jorg
    Turner, BrandonM.
    [J]. TRENDS IN COGNITIVE SCIENCES, 2019, 23 (03) : 251 - 263