Improving Josephson junction reproducibility for superconducting quantum circuits: junction area fluctuation

被引:20
作者
Pishchimova, Anastasiya A. [1 ,2 ]
Smirnov, Nikita S. [1 ]
Ezenkova, Daria A. [1 ]
Krivko, Elizaveta A. [1 ]
Zikiy, Evgeniy V. [1 ]
Moskalev, Dmitry O. [1 ]
Ivanov, Anton I. [1 ]
Korshakov, Nikita D. [1 ]
Rodionov, Ilya A. [1 ,2 ]
机构
[1] Bauman Moscow State Tech Univ, FMN Lab, Moscow 105005, Russia
[2] VNIIA, Dukhov Automat Res Inst, Moscow 127030, Russia
关键词
D O I
10.1038/s41598-023-34051-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Josephson superconducting qubits and parametric amplifiers are prominent examples of superconducting quantum circuits that have shown rapid progress in recent years. As such devices become more complex, the requirements for reproducibility of their electrical properties across a chip are being tightened. Critical current of the Josephson junction Ic is the essential electrical parameter in a chip. So, its variation is to be minimized. According to the Ambegaokar-Baratoff formula, critical current is related to normal-state resistance, which can be measured at room temperature. In this study, we focused on the dominant source of non-uniformity for the Josephson junction critical current-junction area variation. We optimized Josephson junction fabrication process and demonstrated resistance variation of 9.8-4.4% and 4.8-2.3% across 22 x 22 mm(2) and 5 x 10 mm(2) chip areas, respectively. For a wide range of junction areas from 0.008 to 0.12 mu m2, we ensure a small linewidth standard deviation of 4 nm measured over 4500 junctions with linear dimensions from 80 to 680 nm. We found that the dominate source of junction area variation limiting I-c reproducibility is the imperfection of the evaporation system. The developed fabrication process was tested on superconducting highly coherent transmon qubits (T1 > 100 mu s) and a nonlinear asymmetric inductive element parametric amplifier.
引用
收藏
页数:7
相关论文
共 50 条
[31]   JOSEPHSON JUNCTION ARRAYS AND SUPERCONDUCTING WIRE NETWORKS [J].
LOBB, CJ .
HELVETICA PHYSICA ACTA, 1992, 65 (2-3) :219-227
[32]   SINGLE JOSEPHSON JUNCTION SUPERCONDUCTING MEMORY CELL [J].
BLACKBURN, JA ;
SMITH, HJT .
ELECTRONICS LETTERS, 1978, 14 (18) :597-599
[33]   Josephson junction with two superconducting current components [J].
K. V. Kulikov ;
R. Davud ;
E. P. Nakhmedov ;
Yu. M. Shukrinov .
Journal of Experimental and Theoretical Physics, 2017, 125 :333-339
[34]   Wafer-Scale Al Junction Technology for Superconducting Quantum Circuits [J].
Schmelz, Matthias ;
Mutsenik, E. ;
Bravin, S. ;
Sultanov, A. ;
Ziegler, M. ;
Huebner, U. ;
Peiselt, K. ;
Mechold, S. ;
Oelsner, G. ;
Kunert, J. ;
Stolz, R. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2024, 34 (03) :1-5
[35]   Superconducting topological fluids in Josephson junction arrays [J].
Diamantini, MC ;
Sodano, P ;
Trugenberger, CA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18) :L253-L258
[36]   Classical and quantum operation modes of the reversible Josephson-junction logic circuits [J].
Semenov, Vasili K. ;
Danilov, George V. ;
Averin, Dmitri V. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) :455-461
[37]   Duality in the quantum dissipative villain model and application to mesoscopic Josephson junction circuits [J].
Falci, G ;
Weiss, U .
JOURNAL OF SUPERCONDUCTIVITY, 1999, 12 (06) :783-787
[38]   Duality in the Quantum Dissipative Villain Model and Application to Mesoscopic Josephson Junction Circuits [J].
G. Falci ;
U. Weiss .
Journal of Superconductivity, 1999, 12 :783-787
[39]   Y-junction of superconducting Josephson chains [J].
Giuliano, Domenico ;
Sodano, Pasquale .
NUCLEAR PHYSICS B, 2009, 811 (03) :395-419
[40]   Tunable fractional Josephson effect in the topological superconducting junction with embedded quantum dots [J].
Gao, Z. ;
Gong, W. J. ;
Zhang, S. F. ;
Yi, G. Y. ;
Zheng, Y. S. .
EPL, 2015, 109 (04)