Landau and Bloch constants for meromorphic functions

被引:6
作者
Bhowmik, Bappaditya [1 ]
Sen, Sambhunath [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, India
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 201卷 / 02期
关键词
Bloch constant; Landau constant; Meromorphic functions; Univalent disc;
D O I
10.1007/s00605-023-01839-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be the open unit disc in the complex plane, and let A( p) be the class of all functions f holomorphic inD\{p} having a simple pole at z = p is an element of(0, 1) with f ' (0) not equal 0. In this article, we present lower estimates of the Landau and the Bloch constants for functions in A( p) in the Euclidean metric. We also improve these estimates of the Landau and the Bloch constants by considering an interesting subclass of A( p).
引用
收藏
页码:359 / 373
页数:15
相关论文
共 18 条
[1]   An extension of Schwarz's lemma [J].
Ahlfors, Lars V. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :359-364
[2]   Concerning the Bloch constant. [J].
Ahlfors, LV ;
Grunsky, H .
MATHEMATISCHE ZEITSCHRIFT, 1937, 42 :671-673
[3]  
BLOCH A., 1925, Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys., V17, P1
[4]   ON BLOCH CONSTANT [J].
BONK, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (04) :889-894
[5]   Covering properties of meromorphic functions, negative curvature and spherical geometry [J].
Bonk, M ;
Eremenko, A .
ANNALS OF MATHEMATICS, 2000, 152 (02) :551-592
[6]   On Bloch's constant [J].
Chen, HH ;
Gauthier, PM .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 69 :275-291
[7]   Bloch constants for planar harmonic mappings [J].
Chen, HH ;
Gauthier, PM ;
Hengartner, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (11) :3231-3240
[8]   Properties of Some Classes of Planar Harmonic and Planar Biharmonic Mappings [J].
Chen, S. H. ;
Ponnusamy, S. ;
Wang, X. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2011, 5 (03) :901-916
[9]   COEFFICIENT ESTIMATES, LANDAU'S THEOREM AND LIPSCHITZ-TYPE SPACES ON PLANAR HARMONIC MAPPINGS [J].
Chen, Shaolin ;
Ponnusamy, Saminathan ;
Rasila, Antti .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 96 (02) :198-215
[10]  
Dorff M., 2000, COMPUT METH FUNCT TH, V4, P151, DOI DOI 10.1007/BF03321062