Gromov-Witten theory of complete intersections via nodal invariants

被引:6
作者
Arguz, Hulya [1 ]
Bousseau, Pierrick [1 ,4 ]
Pandharipande, Rahul [2 ]
Zvonkine, Dimitri [3 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA USA
[2] Swiss Fed Inst Technol, Dept Math, Zurich, Switzerland
[3] Univ Versailles St Quentin Yvelines, Lab Math Versailles, Versailles, France
[4] Univ Georgia, Dept Math, Athens, GA 30605 USA
基金
欧洲研究理事会;
关键词
DONALDSON-THOMAS THEORY; QUANTUM COHOMOLOGY; MODULI SPACE; CURVES; LOCALIZATION; DEGENERATION; FORMULA; STACKS; MAPS; GW;
D O I
10.1112/topo.12284
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an inductive algorithm computing Gromov-Witten invariants in all genera with arbitrary insertions of all smooth complete intersections in projective space. We also prove that all Gromov-Witten classes of all smooth complete intersections in projective space belong to the tautological ring of the moduli space of stable curves. The main idea is to show that invariants with insertions of primitive cohomology classes are controlled by their monodromy and by invariants defined without primitive insertions but with imposed nodes in the domain curve. To compute these nodal Gromov-Witten invariants, we introduce the new notion of nodal relative Gromov-Witten invariants. We then prove a nodal degeneration formula and a relative splitting formula. These results for nodal relative Gromov-Witten theory are stated in complete generality and are of independent interest.
引用
收藏
页码:264 / 343
页数:80
相关论文
共 83 条
[1]   Relative and orbifold Gromov-Witten invariants [J].
Abramovich, Dan ;
Cadman, Charles ;
Wise, Jonathan .
ALGEBRAIC GEOMETRY, 2017, 4 (04) :472-500
[2]   COMPARISON THEOREMS FOR GROMOV-WITTEN INVARIANTS OF SMOOTH PAIRS AND OF DEGENERATIONS [J].
Abramovich, Dan ;
Marcus, Steffen ;
Wise, Jonathan .
ANNALES DE L INSTITUT FOURIER, 2014, 64 (04) :1611-1667
[3]   Expanded Degenerations and Pairs [J].
Abramovich, Dan ;
Cadman, Charles ;
Fantechi, Barbara ;
Wise, Jonathan .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (06) :2346-2386
[4]  
[Anonymous], 1998, Progr. Math., V160, P141, DOI DOI 10.1007/978-1-4612-0705-45
[5]  
Arguz H., UNPUB
[6]  
BEAUVILLE A, 1986, LECT NOTES MATH, V1194, P8
[7]  
Beauville A., 1997, RCP 25 VOL 48, V1997/42, P57
[8]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[9]   Gromov-Witten invariants in algebraic geometry [J].
Behrend, K .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :601-617
[10]   Stacks of stable maps and Gromov-Witten invariants [J].
Behrend, K ;
Manin, Y .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) :1-60