Homological approximations in persistence theory

被引:8
作者
Blanchette, Benjamin [1 ]
Brustle, Thomas [1 ,2 ]
Hanson, Eric J. [3 ]
机构
[1] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
[2] Bishops Univ, Dept Math, Sherbrooke, PQ J1M 1Z7, Canada
[3] Univ Quebec Montreal, LACIM, Montreal, PQ H2L 2C4, Canada
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2024年 / 76卷 / 01期
关键词
persistence modules; invariants; Grothendieck groups; relative homological algebra; exact structures; REPRESENTATION-THEORY; DISTANCE;
D O I
10.4153/S0008414X22000657
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a class of invariants, which we call homological invariants, for persistence modules over a finite poset. Informally, a homological invariant is one that respects some homological data and takes values in the free abelian group generated by a finite set of indecomposable modules. We focus in particular on groups generated by "spread modules," which are sometimes called "interval modules" in the persistence theory literature. We show that both the dimension vector and rank invariant are equivalent to homological invariants taking values in groups generated by spread modules. We also show that the free abelian group generated by the "single-source" spread modules gives rise to a new invariant which is finer than the rank invariant.
引用
收藏
页码:66 / 103
页数:38
相关论文
共 44 条
[1]   τ-tilting theory [J].
Adachi, Takahide ;
Iyama, Osamu ;
Reiten, Idun .
COMPOSITIO MATHEMATICA, 2014, 150 (03) :415-452
[2]  
[Anonymous], 1992, Algebra, Logic and Applications Series
[3]  
[Anonymous], 2000, Relative Homological Algebra
[4]  
Asashiba H., 2022, PREPRINT
[5]   On interval decomposability of 2D persistence modules [J].
Asashiba, Hideto ;
Buchet, Mickael ;
Escolar, Emerson G. ;
Nakashima, Ken ;
Yoshiwaki, Michio .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 105
[6]  
Assem I., 2006, volume65 of London Mathematical Society Student Texts, V1
[7]   RELATIVE HOMOLOGY AND REPRESENTATION-THEORY .1. RELATIVE HOMOLOGY AND HOMOLOGICALLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
SOLBERG, O .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (09) :2995-3031
[8]   REPRESENTATION THEORY OF ARTIN ALGEBRAS -3 ALMOST SPLIT SEQUENCES [J].
AUSLANDER, M ;
REITEN, I .
COMMUNICATIONS IN ALGEBRA, 1975, 3 (03) :239-294
[9]  
Barannikov Sergey, 1994, The framed Morse complex and its invariants
[10]   Graded Persistence Diagrams and Persistence Landscapes [J].
Betthauser, Leo ;
Bubenik, Peter ;
Edwards, Parker B. .
DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (01) :203-230