Electron Spin Selective Iridium Electrocatalysts for the Oxygen Evolution Reaction

被引:4
作者
Mingoes, Carlos J. [1 ]
Schroeder, Bob C. [2 ]
Sobrido, Ana B. Jorge [1 ]
机构
[1] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
[2] UCL, Chem Dept, London WC1H 0AJ, England
来源
ACS MATERIALS AU | 2023年 / 4卷 / 02期
基金
英国科研创新办公室; 英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
chirality; chiral-induced spin selectivity (CISS); electrocatalysts; oxygen evolution reaction; iridium nanoparticles; electron spin selectivity; HYDROGEN-PRODUCTION; CHARGE-TRANSPORT; WATER OXIDATION; CHIRALITY; CYSTEINE; FUEL; NANOPARTICLES; ORIGIN; FUTURE; BONDS;
D O I
10.1021/acsmaterialsau.3c00084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly efficient electrocatalysts for water electrolysis are crucial to the widespread commercialization of the technology and an important step forward toward a sustainable energy future. In this study, an alternative method for boosting the electrocatalytic activity toward the oxygen evolution reaction (OER) of a well-known electrocatalyst (iridium) is presented. Iridium nanoparticles (2.1 +/- 0.2 nm in diameter) functionalized with chiral molecules were found to markedly enhance the activity of the OER when compared to unfunctionalized and achiral functionalized iridium nanoparticles. At a potential of 1.55 V vs Reference Hydrogen Electrode (RHE), chiral functionalized iridium nanoparticles exhibited an average 85% enhancement in activity with respect to unfunctionalized iridium nanoparticles compared to an average 13% enhancement for the achiral functionalized iridium nanoparticle. This activity enhancement is attributed to a spin-selective electron transfer mechanism taking place on the chiral functionalized catalysts, a characteristic induced by the chirality of the ligand. This alternative path for the OER drastically reduces the production of hydrogen peroxide, which was confirmed via a colorimetric method.
引用
收藏
页码:204 / 213
页数:10
相关论文
共 64 条
[1]  
[Anonymous], 2014, BP Statistical Review of World Energy, V63rd
[2]  
Bensebaa F, 1998, SURF SCI, V405, pL472
[3]   Directing Charge Transfer in Quantum Dot Assemblies [J].
Bloom, Brian P. ;
Liu, Ruibin ;
Zhang, Peng ;
Ghosh, Supriya ;
Naaman, Ron ;
Beratan, David N. ;
Waldeck, David H. .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (10) :2565-2573
[4]   Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots [J].
Bloom, Brian P. ;
Kiran, Vankayala ;
Varade, Vaibhav ;
Naaman, Ron ;
Waldeck, David. H. .
NANO LETTERS, 2016, 16 (07) :4583-4589
[5]   Facile Synthesis of Ligand-Free Iridium Nanoparticles and Their In Vitro Biocompatibility [J].
Brown, Anna L. ;
Winter, Hayden ;
Goforth, Andrea M. ;
Sahay, Gaurav ;
Sun, Conroy .
NANOSCALE RESEARCH LETTERS, 2018, 13
[6]  
Doyle R. L., 2016, PHOTOELECTROCHEMICAL, P41, DOI DOI 10.1007/978-3-319-29641-8_2
[7]   Addressing the challenge of carbon-free energy [J].
Eisenberg, Richard ;
Gray, Harry B. ;
Crabtree, George W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (23) :12543-12549
[8]   Tafel Kinetics of Electrocatalytic Reactions: From Experiment to First-Principles [J].
Fang, Ya-Hui ;
Liu, Zhi-Pan .
ACS CATALYSIS, 2014, 4 (12) :4364-4376
[9]   The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited [J].
Freakley, S. J. ;
Ruiz-Esquius, J. ;
Morgan, D. J. .
SURFACE AND INTERFACE ANALYSIS, 2017, 49 (08) :794-799
[10]   Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media [J].
Garces-Pineda, Felipe A. ;
Blasco-Ahicart, Marta ;
Nieto-Castro, David ;
Lopez, Ntiria ;
Ramon Galan-Mascaros, Jose .
NATURE ENERGY, 2019, 4 (06) :519-525